
  

  

Abstract— This paper describes a novel approach to the 

unobtrusive assessment of a subset of gait characteristics using 

a light detection and ranging (LIDAR) device. The developed 

device is poised to enable unobtrusive, nearly continuous 

monitoring and inference of patients' gait characteristics to 

assess physical and cognitive states. The device provides a 

rapidly sampled signal representing the distance of a 

participant's body from the LIDAR device. The densely sampled 

distance estimation is processed by custom algorithms that can 

potentially be used to estimate various gait characteristics such 

as step size, cadence, double support, and even step-size 

symmetry.   

Clinical Relevance— Since gait is a complex behavior that 

requires seamless cooperation of multiple systems, including 

sensation, perception, muscular synergies, and even cognition. 

Subtle changes in gait may, therefore, indicate issues with 

physical and mental functionality. In addition to the walking 

speed, the gait monitoring results can provide inferences about 

the physical and cognitive states of the unobtrusively monitored 

individuals using their own data as a baseline.  

I. INTRODUCTION 

The ability to walk is a fundamental skill determining the 
quality of life, yet it is often taken for granted. Gait requires 
finely-tuned cooperation of many low and high-level 
neuropsychological processes. Assessment of gait 
characteristics is, therefore, an essential component of 
personalized, proactive care. The rapidly increasing proportion 
of older adults is emerging as a significant challenge to both 
United States and global healthcare. In addition, a variety of 
deficits associated with aging, including traumatic brain injury 
(TBI), stroke, brain tumors, and neurodegenerative diseases, 
pose additional challenges to healthcare systems throughout 
the world. For example, the U.S. Centers for Disease Control 
and Prevention estimates that over 1.7 million Americans 
sustain a TBI each year, 275,000 of whom are hospitalized for 
over two days. While early detection and rehabilitation are 
often possible, their effectiveness is frequently thwarted by the 
sporadic nature of in-clinic neurological assessments.  

Unfortunately, the reliability of current sparse assessments 
is limited by (a) the variability resulting from the time-varying 
and context-dependent health states of participants (e.g., 
having a "good" or a "bad" day) and (b) limited specificity of 
the tests. In particular, the typical approach to assessing gait is 
the timed-get-up-and-go (TUG) test that only measures the 
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total duration of a fixed length walk. There is a need to enable 
unobtrusive, frequent or continuous measurements of gait in 
natural settings outside the clinic. Moreover, several 
characteristics – in addition to the speed of gait – are important 
indicators of an individual's well-being, including physical and 
cognitive states. Therefore, developing economically feasible 
technology that would allow such objective measurements to 
be embedded in the individuals' homes would positively 
transform our ability to provide optimal care. 

In this paper, we describe an approach to unobtrusive 
measurement of gait characteristics using emerging 
technology based on an inexpensive Light Detection and 
Ranging (LIDAR) device. We describe our current 
implementation of the device and demonstrate its ability to 
estimate walking speed and other gait characteristics with 
algorithms for transforming the raw distance observations to 
inferences of gait characteristics. To develop the theoretical 
underpinnings of the analytic strategy, we used laboratory 
measurements where the gait characteristics were obtained 
using video-based motion capture system. Subsequently, we 
compared the LIDAR results to inertial monitoring devices 
attached to the legs and center of the torso. Because of the 
inability to run in-lab experiments due to the pandemic, we 
only describe a demonstration rather than validation of the 
approach from previously collected data. 

II. BACKGROUND 

A. Gait Characteristics as Health Metrics 

Gait is a critical determinant of quality of life and is often 
used to assess individuals' physical and neuropsychological 
health-related characteristics. Gait assessment is particularly 
useful for older adults and those with a variety of neurological 
conditions, including multiple sclerosis, Parkinson's and 
Alzheimer's diseases, ALS, etc.  There is evidence that aspects 
of gait interact with various cognitive functions [1-3]. In fact, 
speed of walking is predictive of cognitive decline in older 
adults [4, 5].  This decrement in gait speed while performing a 
cognitive task is taken as a measure of the interference 
between cognitive and walking tasks and may well reflect the 
cognitive reserve [6, 7]. In addition, assessment of symmetry 
[8] can be useful in optimizing rehabilitation [9]. Kinematic 
characteristics of gait, such as cadence, which are unobtainable 
with a TUG test, are typically measured in a clinic or 
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laboratory using expensive devices based on video 
monitoring.  Besides the high cost, these systems usually 
require placing fiducial markers on the participants and 
sophisticated data analysis. Alternate approaches based on 
Inertial Measuring Units (IMUs) allow measurements in 
natural environments but need the participant to wear sensors 
attached to their limbs and possibly other parts of their body. 
Moreover, these devices require frequent charging and 
downloading of the data. Although these devices have been 
successfully used for research [10], their requirements 
represent barriers to using such devices for continuous 
monitoring and assessment.  

To overcome existing shortcomings, we investigated an 
alternate solution that would enable unobtrusive monitoring of 
additional gait characteristics. This was in part stimulated by 
our understanding of the biomechanics of walking and further 
supported by recent research relating center of mass (CoM) 
movements to limb movements [11]. Our goal was to 
demonstrate the feasibility of this general approach when 
applied to unobtrusive monitoring.  

B. LIDAR-Based Approach 

The novel approach presented in this paper is to use a 
LIDAR-based distance measurement device to infer 
individuals' gait characteristics. This paper focuses on 
extending the use of the LIDAR-based device initially 
developed to measure gait speed in a clinic more precisely and 
objectively [12]. 

III. METHODS 

This section describes the prototype of the device, the 
LIDAR data, and a theoretical underpinning together with 
initial laboratory results with a video-based system for 
movement capture. Finally, we describe the current version of 
our algorithms. 

A. GAITBOX - Engineering Design of the LIDAR device 

 The device, called GAITBOX (GB), shown in Fig. 1, is a 
low-cost and accurate alternative to clinical gait speed 
measurements with stopwatches [12].  In the GB, the distance 
measurements are realized using a Light Detection and 
Ranging (LIDAR) device and microcontroller that calculates 
and displays estimates of walking speed.  LIDAR makes these 
distance measurements by measuring the time of flight from 
the device to and from the object. Since light travels 15 cm in 
a nanosecond, the device requires very high temporal 
resolution, which only became available very recently with the 
advent of affordable LIDAR systems.  The particular LIDAR 
sensor used in the GB is Lidar Lite V3 made by Garmin. It 
generates approximately 1.3W of peak power at 905 nm.  
Since the pulse width is only 0.5 sec, the total energy 
impinging on a walker is on the order of 10-6 J, well within the 
safety limits (1 mW). The divergence of the beam ("field of 
view") is approximately 0.46 degrees, which means that at the 
distance of 10 meters, the beam diameter is approximately 8-
10 cm. These characteristics provide a LIDAR cross-section in 
the infrared range that is adequate for detecting a human 
walking within the LIDAR beam. 

To achieve our goal of assessing parameters such as 
symmetry of an individual's gait, our team had to increase the 
sampling rate to sample every 10 msec. At this sampling rate 

of 100 Hz, the sensed data 
would be sampled with a 
sufficient density to assure 
recoverable distance signal 
with a sufficiently high signal-
to-noise ratio.  Although the 
sensor does not incorporate an 
antialiasing filter, the 
integration time constant of the 
sensor corresponding to 10 
msec sampling rate effectively 
provided sufficient suppression 
of higher frequency noise.   

The GB employs an Arduino Uno microcontroller 
interfaced to a Garmin LIDAR-Lite V3 Laser Ranging 
Module. The original version of the device, designed to 
facilitate the NIH Toolbox Walk Test (NIH-WT), recorded the 
"start" distance and the "end" distance of each walk to estimate 
the average speed of walking covering a distance up to 40 
meters. To measure walking speed using the GB, the device is 
positioned approximately 1.2 m off the ground and pointed 
down the center of the walking path at the subject's torso. The 
device is powered either by wall power or a battery pack.  

For this effort, we significantly modified the original 
device and added the ability to measure and record distance 
every 10 msec continuously while a subject is in the walking 
path.  This modification required switching to a more powerful 
microcontroller with more internal memory and the addition 
of a shield to leverage a removable S.D. memory card. The 
ultimate design will include a wireless connection.   

B. Foundations and Laboratory Study 

The goal of this project was to estimate aspects of gait from 

the measurements of a torso movement as sensed by the GB.  

The first step then required us to determine the ability to infer 

leg movement from the torso center, which is well 

approximated by monitoring the anterior-posterior 

movements of the sacrum. One participant walked on a 

treadmill at a constant speed of 1.0 mph, while the kinematics 

of the sacrum, pelvis and both legs were collected using a 12-

camera passive reflective marker motion tracking system 

sampling at 120 Hz (OptiTrack Flex 13; NaturalPoint, 

Corvallis, OR). Since the treadmill moved at a constant 

velocity 0v  along the x - axis  (0.45m/sec), the instantaneous 

velocity ( )v t  of a participant's center of mass (COM), 

 
Figure 2. Raw data from the motion tracking system from a 
participant walking uniformly on a treadmill. 

 
Figure 1. An image of the GB 
prototype. 
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measured as ( )mv t  is given by ( ) ( ) 0mv t v t v= − and the 

observed instantaneous position is given by 

 ( ) ( ) 0
0

,
t

mx t v d v t



 

=

=
= −  (1) 

where 0t =  is the starting time. An example of a segment 

of the resulting raw data is shown in Fig. 2. The position of 

each marker is referenced to the ground of the treadmill 

center. The blue and red lines represent the kinematics of the 

left and right ankle positions. Although the participant is 

walking forward, when their foot is planted on the treadmill, 

it moves in a negative direction 0v−  with the treadmill. The 

corresponding analytic estimates of toe lift-off and heal-

strikes locations and times are shown by the up and down-

facing triangles with corresponding colors.  The black curve 

in this graph representing the sacrum kinematics suggests that 

aspects of gait phases are reflected in the sacrum position, 

albeit with a smaller amplitude.  An illustration of the 

relationship between the different gait phases and the sacrum 

movements is shown in Fig 3. With left swing corresponding 

to the blue segments, right swing to red segments, and double 

stance to the green segment. This graph suggests that the 

sacrum extrema may be a reasonable approximation to the 

gait segment transitions times with positive parts of the 

sacrum movement corresponding to double stance. The 

negative slopes of the sacrum movements can be used as 

reasonable estimates of the duration and the size of the 

individual steps. Using these results, we can estimate a variety 

of gait parameters from the fine distance measurements of the 

torso from a fixed point.   

IV. LIDAR DATA ANALYSIS 

The GB raw data are essentially sequences of distance 
measured in meters sampled every 10 msec.  These data are 
similar to the laboratory data described in the previous section 
except for the motion and constraints imposed by the treadmill 
motion.  

A. Preliminary Experimental Assessment 

The goal of our preliminary evaluation of the performance 
was to use the GB to monitor several participants (authors) 
with known issues affecting their gait.  The general approach 

involves monitoring of walking individuals using the GB 
simultaneously with three commercial IMUs (Shimmer) 
attached to the torso and shins near the left and right ankles.   
For this demonstration, we collected GB data for simulated 
walks in a home environment, including natural, fast, slow, 
and asymmetric step-sizes The device was set up to 
synchronize with the IMUs by stepping on a floor switch. 
Subjects walked away from the GB with the first step on the 
footswitch.  The GB started measuring distances every 10 ms 
when the switch was activated and stopped recording once he 
reached a distance of 5.5 meters. The data were analyzed 
offline using the Matlab programming environment.  

The goal of the analytic effort was to assess the feasibility 
of extracting metrics relating to individual steps using methods 
similar to those applied to the laboratory video data in the 
previous section. For the initial proof-of-concept, we chose to 
identify the timing and size of steps using the GB. To this end, 
the raw GB data were used to estimate the average gait speed, 

analog to 0v  in  (1)  by computing a linear regression as shown 

by the straight line in the top of Fig. 4. The slope of the linear 

regression is an RMS estimate of the average speed 0v . The 

red trend line estimates slow variations in speed in the middle 

graph. To minimize noise enhancement due to differentiation, 
we use the residuals that represent the deviations from a 
uniform velocity in a similar manner as we observed the 
movement of the sacrum on the treadmill. To the extent that 
the gait is periodic, a standard fast Fourier transform (FFT) can 
be used to determine the cadence, and in combination with the 
speed estimate, the step size (bottom of Fig 4). The largest 
peak of the FFT represents a combination of the individual 
steps, and the subharmonics at ½ of the peak frequency 
represent the right and left steps. The FFT-based analysis, 
however, is most useful if the quasi-periodic gait pattern is 
nearly periodic and ergodic.  

Since these assumptions are likely to be violated, 
especially by individuals with various dysfunctions such as 

 
Figure 3. Movement of the sacrum with gait phases identified by 
different colors (see legend). 

 
Figure 4. GB Data: A- raw data (blue), regression (red), B - residuals 

and slow trend, C-Band-Pass of the residuals, D-FFT of the residuals. 
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those with traumatic brain injury or stroke survivors, we chose 
to use an analysis based on continuous wavelet transform 
(CWT) [13]. Using CWT provides the advantage of analysis 
at multiple time scales, and therefore, it is useful for signals 
that are not ergodic and strictly periodic.  The results of the 
CWT analysis with Morlet wavelet and band-pass filtering of 
the GB signal is shown in Fig. 5. 

This CWT-based approach allowed us to compare the 
results of the GB measurements with those using a commercial 
inertial measurement system (Shimmer). The results of a 
healthy individual walking at an average speed are shown in 
Fig. 5. The smoothing (band-pass filtering) of the raw 
residuals enabled us to estimate the peak and valleys that 
signify changes in gait phases. The number of peaks in the GB 
signal corresponds to the number of steps. In addition, like in 
the laboratory experiments, the GB data suggest that the 
segments with a positive increase in the residual values 
correspond to the double support phases of the gait. To 
illustrate the ability to detect gait anomalies, the participants 
simulated asymmetric gait by taking longer steps with one leg 
than the other. A typical example of the results of this type of 
gait is shown in Fig. 6. There is a clear difference between the 

healthy gait patterns and those with asymmetric step size – the 
leg with the longer step size dominates the torso's movement. 

CONCLUSION 

This paper presents preliminary results of our 
investigation of a novel approach to the unobtrusive 
assessment of a subset of gait parameters. The reported results 
demonstrate a promising potential of the LIDAR-based 
approach for gait analysis. In our future work we plan to 
perform an empirical study and use machine learning to 
estimate gait characteristics extending previous work [13] 
inferring symmetry, timing and other gait characteristics. 
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Figure 5. Comparison of GB results (top) with IMU measurements 
attached at the left ankle (middle) and at the center of mass, torso of 

the walker (bottom). 

 
Figure 6. Same as Fig 5. but for an asymmetric gait simulated by 

healthy participants.  
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