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Abstract— Brain-Computer Interface (BCI) is applied in the
study of different cognitive processes or clinical conditions
as enhancing cognitive skills, motor rehabilitation, and
control. However, many approaches focus on using a robust
classifier instead of providing a better feature space. This
work develops a feature representation methodology through
the kernel canonical correlation analysis to reveal nonlinear
relations between filter-banked common spatial patterns
(CSP) extracted. Our approach reveals nonlinear relations
between ranked filter-banked multi-class CSP features and
the labels in a finite-dimensional canonical space. We tested
the performance of our methodology on the BCI Competition
IV dataset 2a. The introduced feature representation using a
classic linear SVM achieves accuracy rates competitive with
the state-of-the-art BCI strategies. Besides, the processing
pipeline allows identifying the spatial and spectral features
driven by the underlying brain activity and best modeling the
motor imagery intentions.

Clinical relevance— This BCI strategy assesses the nonlinear
relationships between time series to improve the interpretation
of brain electrical activity, taking into account the spatial and
spectral features driven by the underlying brain dynamic.

I. INTRODUCTION

Brain-computer interface systems allow users to control
applications and devices from neuroimaging data. Among
all kinds of neuroimages, electroencephalographic (EEG)
signals non-invasively record brain electrical activity driven
by stimuli or intentions. BCI applications for motor-disabled
people include physical therapy, rehabilitation, and motion
assistance. One of the most significant open issues in BCI
relies on the extraction and selection of features relevant for
performing an action and explaining the underlying brain dy-
namics [1]. On the one hand, feature engineering approaches
demand knowledge about brain physiology, which sometimes
is either unknown or suffers from insufficient accuracy. On
the contrary, the deep learning models outperform thanks to
the hierarchically gained complexity. However, the reasons
behind the outcomes become inscrutable, and the predictions
result disbelieved in critical scenarios.

The literature considers many multi-class motor imagery
BCI strategies to enhance the discrimination, either based
on the development of more robust and complex classifiers
or the relevant information extraction. The formers include
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neighborhood rough set classifiers with a type-2 fuzzy logic
system using the extracted features [2], [3], and a classifier
fusion method based on Dempster–Shafer theory to combine
the binary classifiers resulting from the one-versus-rest train-
ing approach [4]. However, these approaches mainly focus
on the multi-class classifier performance improvement to
achieve high kappa values. The other kind of approach only
analyzes statistical dependencies between activation areas
and MI tasks, so that skipping the relevant features associated
with neuronal activity [5].

This work proposes a feature representation methodology
for BCI that decodes nonlinear relationships from EEG data
through the Kernel Canonical Correlation Analysis (KCCA)
[6]. The proposal highlights spatial and temporal patterns
by analyzing EEG trials belonging to one of two classes.
We consider a BCI processing pipeline as follows: First, a
filter bank decomposes EEG signals into subbands covering
the frequency range between 4 to 40 Hz. Secondly, the
common spatial patterns technique extracts spatial filters on
each frequency band to maximize the differences between the
evaluated tasks. Then, the extracted features concatenate to
form a single feature vector with spectral and spatial informa-
tion. The proposed KCCA-based feature representation maps
the characterized trials and task labels into a new joint space.
We test the proposed methodology in the well-known BCI
Competition IV dataset 2a containing EEG records from nine
healthy subjects while performing four motor imagery (MI)
tasks, which provided training and test subsets. We fit the
multi-class model through a linear support vector machine
(SVM) classifier using all training data for selected features
and the parameters found by a 10-fold nested cross-validation
scheme. Then, we infer the MI condition associated with
the testing data employed the model trained from training
data. We quantify the performance in terms of Cohen’s
kappa coefficient κ . Our results show that the proposed
feature representation. Besides, we perform a statistical test
for comparison purposes between our results and state-of-
the-art, resulting in significant improvements with p-values
lower than 1%.

II. MATERIALS AND METHODS

A. Filter-banked Multi-class Common Spatial Patterns

Let a labeled EEG signal dataset{
XXXn ∈ RC×T , ln ∈ {1,L}

}N
n=1 holding N time-series trials

with C channels at T time instants, where each trial is
related to one of L classes through its label ln.
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For a binary classification task, the Common spatial pat-
tern technique finds the spatial projection maximizing the
variance of trials belonging to one class while minimizing
the variance of the other [7]. This work considers a filter-
banked one-versus-rest (OVR) strategy as the multi-class
CSP extension that independently maximizes the separability
of studied conditions at each of B frequency bands. The OVR
CSP maps each band b into a linearly uncorrelated space
through the matrix of column-wise spatial filters WWW l

b ∈RC×M ,
being M the number of spatial filters and l the class index.
The CSP problem is stated as a generalized eigenvalue
problem ΣΣΣ

l
bWWW l

b = ΛΛΛ
l
b(ΣΣΣ

l
b + ΣΣΣ

−l
b )WWW l

b, where the superscript
−l indicates all classes but l, the diagonal matrix ΛΛΛ

l
b holds

the generalized eigenvalues. ΣΣΣ
l
b ∈RC×C and ΣΣΣ

−l
b ∈RC×C are

the covariance matrices in the channel space for EEG trials
belonging to class l and for the remaining trials, respectively.
Then, the log-relative power in the CSP space compose the
extracted feature set:

yyyl
nb = log

diag
((

WWW l
b
)>

XXXnbXXX>nbWWW l
b

)
tr
((

WWW l
b
)>

XXXnbXXX>nbWWW l
b

)
 (1)

where diag(·) and tr(·) stand for the diagonal and trace
operators, respectively. yyyl

nb ∈ RM denotes the M spatial
features. As a result, the matrix YYY ∈ RN×D (D = B · L ·M)
holds the M spatial features for the L classes and B frequency
bands extracted from the input EEG dataset.

B. Mutual Information-based feature selection

Since the number of extracted features D grows with the
number of frequency bands, spatial filters, and classes; the
feature space becomes highly dimensional. Aiming at dealing
with such an issue, the Mutual Information of Best Individual
Feature (MIBIF) algorithm ranks features according the
information shared with the provided labels, as follows:

Id =−∑
l

πl log(πl)+∑
l

∫
p(l|yd) log

(
p(l|yd)

)
dyd (2)

where yd corresponds to the d-th feature in YYY , and Id denotes
the mutual information between the d-th feature and the
labels. πl and p(yd |l) denote the class prior and posterior dis-
tributions. The former is computed from the class histogram.
The latter can be approximated using the Bayes theorem
and the non-parametric Parzen window estimator [8],[9].
Consequently, MIBIF provides a matrix of selected features
YYY ε =

[
yyyd ∈ RN : ∀d : Id > ε

]
∈RN×D′ holding the D′ features

sharing the most information with the labels.

C. Feature Embedding using Regularized Kernel Canonical
Correlation Analysis

The Canonical Correlation Analysis (CCA) linearly em-
beds features from two spaces into a new single space
with the maximum linear correlation. The kernel extension
of CCA, termed Kernel CCA (KCCA), decodes nonlinear
relationships from the input spaces by linearly combining the
nonlinear kernel data embedding zzzY =ααα>KKKY and zzzl = βββ

>KKKl ,

where the kernel matrices KKKY ∈ RN×N and KKKl ∈ {0,1}N×N

contain the inner products in the Reproduced Hilbert Spaces
kY (n,m) = exp(−γ‖yyyn − yyym‖2) and kl(n,m) = δ (ln − lm),
respectively. Vectors ααα ∈ RN and βββ ∈ RN are the canon-
ical basis of KKKY and KKKl that maximize the correlation of
embedded data [6]:

max
ααα,βββ

zzz>Y zzzl = max
ααα,βββ

ααα
>K̄KK>Y K̄KKlβββ (3)

s.t.
√

ααα>
(

K̄KKY +ρY III
)2

ααα = 1√
βββ
> ( K̄KKl +ρlIII

)2
βββ = 1

being K̄KK =
(

IIIN−
111N 111>N

N

)
KKK
(

IIIN−
111N 111>N

N

)
the centered kernel

matrix, and ρY ∈R+ and ρl ∈R+ regularization parameters.
Using Lagrange multipliers, the problem in Equation (3)
becomes the following generalized eigenvalue problem:

AAA
(

ααα

βββ

)
= λBBB

(
ααα

βββ

)
(4)

AAA =

(
000 K̄KK>Y K̄KKl

K̄KK>l K̄KKY 000

)

BBB =

((
K̄KKY +ρY IIIN

)2 000
000

(
K̄KKl +ρlIIIN

)2

)
with λ ∈ R+ as the Lagrange multiplier for both con-

straints as well as an eigenvalue, and the vector [ααα>βββ
>]>

its corresponding eigenvector. Therefore, the first N resulting
eigenvectors map a multichannel trial into an N-dimensional
vector space maximally correlated with EEG data labels, so
favoring the class separability.

III. EXPERIMENTAL SET-UP AND RESULTS

A. Dataset and preprocessing

This work evaluates the proposed representation methodol-
ogy using the publicly available BCI Competition IV dataset
2a, released by the Institute for Knowledge Discovery (Lab-
oratory of Brain-Computer Interfaces) at the Graz University
of Technology. The dataset records EEG signals from nine
healthy subjects performing an instructed MI task per trial.
Each trial lasts six seconds, starting with a fixed cross on
the computer screen accompanied by a beep. From 2 to
3.25 seconds, an arrow instructs the movement to imagine,
namely, move the left hand, right hand, both feet, or tongue.
From trial to trial, a one-second blank screen allows a short
break. Twenty-two Ag/AgCl electrodes record EEG signals
distributed according to the international 10-20 montage
system. Also, the dataset holds two subsets: A training one
with 288 trials and a testing one with 288 trials. The former
is considered for the learning and parameter tuning stages,
while the latter for validating and reporting results.

Given that the MI segment lies within 2.5 to 4.5 seconds
and that the recordings were downsampled to 250Hz, each
trial becomes a time-series lasting T = 500 time instants over
C = 22 channels. For the preprocessing, a bank of B = 9
five-ordered Butterworth bandpass filters without phase shift
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divide the time-series into non-overlapped subbands of 4 Hz
from 4 to 40 Hz [9]. For the feature extraction, the OVR-CSP
extracts M = 4 spatial filters from each of the L = 4 classes,
resulting in 16 values per band. Consequently, all values
build a single feature vector of D = 144 features including
spectral and spatial information [10].

B. Hyperparameter tuning

Note that the proposed approach comprises four hyper-
parameters, namely, the scale for the RBF kernel γ , the
number of selected features D′, and the regularization pa-
rameters ρY and ρl . The kernel scale is fixed to the inverse
median pairwise distance among training samples yyyn. For
the remaining, an exhaustive cross-validated grid search fixes
the optimal parameters from the grid of F ′ ∈ [5,144], ρY ∈
[1×10−5,1], and ρl ∈ [1×10−5,1]. The grid search quantifies
the performance of the hyperparameter set according to
the mean Cohen’s kappa coefficient along ten testing folds,
considering a linear SVM classifier.

Figure 1 illustrates the ten fold average hyperparameter
tuning curves for each subject in the dataset, that is, The
canonical correlation versus the regularization parameters,
and the Cohen’s kappa score along the number of selected
features. In general, the tuning curves evidence two subject
groups, namely, S07, S03, S01, S08, S09 and S04, S05,
S02, S06. The former achieve not only larger canonical
correlations, but also large kappa scores. Particularly for the
feature kernel regularization ρY , all subjects reach the opti-
mal parameter near the same value before 1×10−2. Note that
ρY larger than the optimal decreases the correlation, since
highly regularized matrices become diagonal. Regarding ρl ,
the target regularization lacks any effect on the correlation.
Such a fact is due to the ill-conditioning of the target kernel
matrix, as it has as many nonzero eigenvalues as classes
exist. Further, the nonzero eigenvalues are the same because
the target kernel is a delta function. Hence, the feature
kernel regularization may be fixed for new subjects, while
the target regularization can be any small value, so avoiding
the exhaustive search for tuning them.

The tuning curve in Figure 1(c) proves that there exists a
feature subset with the maximum kappa score. In general,
less than 80 features reach the optimal performance, so
that increasing the dimension D′ hampers the performance.
Besides, the performance of the first subjects group rapidly
grows, demanding a few predictors. On the contrary, sub-
jects in the second group, with lower performance, present
slowly-growing and flatter curves, and usually requiring more
features than the former subjects. Therefore, introducing the
MIBIF stage not only reduces the redundant information but
also correlates with the subject performance.

Figure 2 presents the relative number of features selected
at each frequency band for each subject, where a value of
one means that all features are chosen. Subjects are sorted
in descending order according to their kappa score at the
optimal hyperparameters. On the left side, subjects with
the highest scores demand features that are quite located
in a few bands, known as relevant for the MI paradigm
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Fig. 1. Hyperparameter tuning curves. All curves are averaged along ten
test folds.

(e.g. 8-12Hz, 20-24Hz, or 28-32Hz). On the right side, the
low-performing subjects require information from the whole
spectrum to better discriminate classes. And, on the other
one subjects with high kappa values need fewer features for
each band by choosing the relevant frequency information
associated with the paradigm under study. Consequently, the
proposed framework yields a feature subset with spectral
interpretability related to the expected subject performance
in the instructed BCI task.

C. Performance analysis

To graphically analyze the performance of the proposal,
Table I color codes the confusion matrices for each subject.
Note that green cells in columns agreeing predicted and
target labels imply a high sensitivity. Also, red cells in
columns mismatching the estimated and target labels identify
low false-positive rates. The results evidence that left and
hand movements are the best classified among the first
subject group (the best-performing ones), which can be
related to the handedness preference. On the contrary, the
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TABLE I
CONFUSION MATRICES FOR EACH SUBJECT AVERAGED OVER TEN TEST FOLDS

Subject Target Left (L) Target Right (R) Target Feet (F) Target Tongue (T)
L R F T L R F T L R F T L R F T

7 84,3 14,5 1,2 0 1,8 98,2 0 0 0 0 81,3 18,7 0 3,2 14,3 82,5
3 84,2 0 10,5 5,3 3,8 88,5 2,6 5,1 0 1,8 85,5 12,7 0 0 17,2 82,8
1 87,3 7,6 1,3 3,8 1,5 95,5 1,5 1,5 0 0 74 26 1,7 0 17,2 81
8 78,8 7,5 12,5 1,3 2,8 81,7 9,9 5,6 0 0 95,5 4,5 1,3 5,3 13,2 80,3
9 84,7 12,5 2,8 0 6,3 62,5 28,1 3,1 0 14,6 81,3 4,2 0 11,3 12,5 76,3
4 77,8 15,6 2,2 4,4 25 63,2 0 11,8 10,9 10,9 98,8 9,4 0 0 27,5 72,5
5 66,7 5,8 10,1 17,4 13,8 56,4 22,3 7,4 0 20 73,3 6,7 11,2 5,1 33,7 50
2 39,2 33,3 3,9 23,5 31,1 45,9 9,5 13,5 12,6 12,6 55,3 19,4 27,8 11,1 5,6 55,6
6 42 24 12 22 25 48,1 7,7 19,2 20 17,8 62,2 0 14,7 14,7 23,5 47,1

Average 71,7 13,4 6,3 8,6 12,3 71,1 9,1 7,5 4,8 8,6 78,6 11,3 6,3 5,6 18,3 69,8
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Fig. 2. Feature distribution along the frequency bands for each subject.

worst-performing subjects tend to mislabel the left hand
(left arrow) and the right hand (right arrow). Overall, the
approach confuses the feet (down) and the tongue (up arrow)
no more than 33% of the time. Hence, the proposed KCCA-
based representation suitably identifies the target class while
exhibiting the most confusion between opposite MI tasks,
which agrees with the MI physiology.

Table II compares the attained results against approaches
in the state-of-the-art in the provided test subset, proving
that the proposal outperforms in four out of nine subjects,
two of them being usually low performing. In the remaining
ones, the difference between the best result and the proposal
is shorter than five percent, except for S08 that consid-
erably improves within a Bayesian framework[5]. Overall,
the KCCA reaches the highest grand average kappa score
with the shortest deviation, becoming the most balanced
approach among the compared ones. Besides, the paired
t-test, quantifying the difference between our results and
literature, proves a statistically significant improvement with
p-values under 1% in three out the four compared works.
Consequently, the introduced KCCA-based representation
approach highlights the discriminant information among the
studied MI conditions for the best and worst-performing
subjects.
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