
  

 

Abstract— The accurate detection of malignant tissue during 

colorectal surgery impacts operation outcome. The non-invasive 

spectral imaging combined with machine learning (ML) 

methods showed to be promising for tumor identification. 

However, large spectral range implies large computing time. To 

reduce the number of features, ML methods (e.g. logistic 

regression and convolutional neuronal network CNN) were 

evaluated based on four physiological tissue parameters to 

automatically classify cancer and healthy mucosa in resected 

colon tissue. A ROC AUC of 0.81 was achieved with the CNN. 

This study shows that the use of only specific wavelengths bands 

can detect cancer. 

 

Clinical Relevance— These outcomes support the possibility 

to automatically classify colon tumor based on physiological 

parameters calculated using only specific wavelength bands. 

Hence, future image-guided colorectal surgeries can be 

performed with real-time multispectral imaging. 

I. INTRODUCTION 

Colorectal cancer is the fourth deadliest cancer in the world 
[1]. Early diagnosis by biopsy is important to reduce mortality. 
Furthermore, the quality of the surgical intervention, which 
represents the reference therapy for advanced cancers, is also 
crucial to achieve curative treatment. The operation outcomes 
depend on the complete removal of the tumor. Therefore, the 
detection of the tumor borders is extremely important. 
Currently, the surgeon inspects the resected tissue visually and 
tactilely. 

New imaging technologies offer possibilities to support the 
surgeon during operations and biopsies. Medical hyperspectral 
imaging (HSI) is a non-invasive and contactless technology 
that provides information about tissue properties [2]. The 
principle is the measurement of light interaction with tissue 
(reflectance, absorption, scattering) using optical sensors and 
a camera. In addition, physiological parameters such as tissue 
oxygenation saturation can be determined based on specific 
spectral bands in the visual and near-infrared electromagnetic 
wavelength range [3]. A great advantage of this imaging 
method is that it can be easily integrated with surgical 
laparoscopes or endoscopes [4]. 

Several studies have already shown that colorectal cancer 
can be successfully recognized using reflection spectra. 
Classification of colorectal cancer on specimens was done 
using simple threshold value using linear discriminant analysis 
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(LDA) [5], neural networks [6], and convolutional neural 
networks (CNN), such as hybrid CNN as a combination of 2D- 
and 3D-CNN and the ResnetCNN [7]. One limitation of these 
powerful methods is the large computing time when large 
spectral range is used. This is not compatible with 
intraoperative use. 

Therefore, we present in this paper a classification 
approach based on four different physiological parameters. 
These are computed using known restricted wavelength bands. 
We described in a previous paper that physiological 
parameters show different values between healthy tissue and 
tumors, different tumor grades, and tumors treated with 
different therapies [6]. Based on these findings, this work aims 
to investigate whether it is possible to successfully identify 
cancerous tissue based on physiological parameters. For this 
purpose, classical machine learning (ML) methods and deep 
convolutional neural networks (CNN) were implemented and 
evaluated in a leave-one-patient-out cross-validation 
(LOPOCV) and a 5-fold cross-validation (5-fold CV). 

II. METHODS 

Fig. 1 shows the processing steps of the approach, which are 

presented in this section. 

 

A. Patient data 

The study was performed at the University Hospital of 
Leipzig, Germany, which was approved by the local ethics 
committee of the Leipzig University (026/18-ek) and 
registered at Clinicaltrials.gov (NCT04230603). It was 
conducted during July 2019 and May 2020 and includes 52 
patients who underwent a colorectal surgery. 18 of them 
received neodjuvant treatment and 25 patients had malignant 
tumors of different TNM types.   
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B. Surgical procedure and image recording 

Resected colon tissue was lengthwise cut through and the 
inside tissue imaged using the HSI system TIVITA® Tissue 
system (Diaspective Vision GmbH, Am Salzhaff-Pepelow, 
Germany). The measurements were done in the operating 

room within 10 minutes after tissue resection as described in 
[8]. The acquisition time and spectral range of the HSI data is 
6s and 500 to 1000 nm, respectively. Further technical details 
can be found in [9]. An experienced pathologist and a surgeon 
annotated the tissue as described in [6]. In this work, two tissue 
classes are considered: cancer and healthy tissue. 

C. Calculation of the physiological parameters and image 

preprocessing 

Based on the recorded HSI cubes four physiological 

parameters were calculated according to the algorithms 

described in [3]: 

 tissue oxygenation (StO2), 

 near-infrared perfusion index (NIR PI),  

 tissue water index (TWI), and  

 organ hemoglobin index (OHI) (figure 2).  

The StO2 was calculated using the spectral ranges from 570 

to 590 nm and 740 to 780 nm. The wavelength ranges from 

655-735 nm and 825-925 nm were used to calculate the NIR 

PI. Hemoglobin is known to absorb light mostly in the ranges 

530 to 590 nm and 785 to 825 nm. These were used to 

calculate the OHI. At 960 nm the water presents a peak in the 

absorbance spectra. So the TWI was calculated based on 

spectra values in the range of 880-900 nm and 955-980 nm. 

 

Figure 2 Physiological parameter calculated by using the spectral data. 

 

Figure 1 Pipeline of the working process. 
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D.  Automatic classification 

ML methods and, more recently, deep learning approaches 

were evaluated with HSI data and showed promising results 

for medical applications [10], [11], [12]. We tested several 

standard ML and CNN algorithms to detect cancer tissue 

based on the pixel-wise calculated prediction score. Logistic 

regression (LR), support vector machine (SVM) with linear 

and radial basis kernel of degree 3, random forest (RF) with 

100 trees, and k-nearest neighbors (KNN) with 5 neighbors 

were implemented using Python’s Scikit-learn library [13].  

Two CNN with 11 Layers and an inception block with 3 

layers were implemented using the Tensorflow 2.4., CUDA, 

and the Adam optimization (0.001). The parameter images 

were smoothed using a Gaussian filter (kernel size: 21, sigma 

value: 2) to reduce the image noise previously to the 

classification step. 

E. Implementation and Training 

The dataset including the 52 patients is composed of 

5,385,018 spectra representing healthy tissue and 495,553 

spectra corresponding to cancer. For the standard ML 

algorithms, the data were balanced by randomly selecting the 

same number of spectra of healthy tissue and cancer. For the 

CNNs, we used class weights. These were calculated by 

dividing the total number of samples by the number of 

samples per class. The input dataset for the CNN was spatial 

patches of 5x5 pixels.  

Standard ML algorithms were trained and evaluated based on 

a 3-fold cross-validation on a small dataset (10% of the whole 

dataset). The best model was evaluated using a LOPOCV. 

The CNNs were tested by leaving 20% of the patients out. The 

testing group in each fold was fully independent. The training 

and validation were performed on patients in the remaining 4 

folds. Feature importance was calculated based on the whole 

dataset using scikit-learn version 0.24.2[14]. 

F. Performance metrics and statistical methods 

Standard metrics, including the Area Under Receiver 

Operator Curve (ROC-AUC), sensitivity, specificity, and F1-

score, were implemented using Python scikit-learn (version 

0.23, https://scikit-learn.org) to evaluate the performance of 

the classifiers. The ROC-AUC can measure the performance 

of models in unbalanced datasets very well. A two-tailed 

paired t-test with alpha=0.05 as a significant value was done 

for statistical analysis using Excel (Microsoft Office 365, 

Microsoft, U.S.A.). 

III. RESULTS 

Among the ML algorithms, the SVM with linear kernel and 

the LR achieved the highest performances with an averaged 

sensitivity of 0.68 and specificity of 0.75 and 0.74, 

respectively, in the 3-fold CV. The KNN, MLP, RF, and SVM 

with radial basis kernel achieved an averaged sensitivity of 

0.73, 0.71, 0.78, 0.70, respectively, and an averaged 

specificity of 0.55, 0.66, 0.53, and 0.73, respectively. Finally, 

the LR was chosen for the LOPOCV due to its faster model 

training. On the other hand, the CNN models were trained and 

evaluated with the complete dataset. The best performance 

 

TABLE I.  RESULTS: PERFORMANCE OF TWO CLASSIFICATION MODELS IN TERMS OF F1-SCORE, SENSITIVITY, SPECIFICITY AND AUC-SCORE. 

 

 
                
 

F1 Score Sensitivity Specificity AUC 

  Mean Std Mean Std Mean Std Mean Std 

Logistic regression 0.35 0.26 0.60 0.37 0.73 0.24 0.72 0.25 

3D-CNN with 

inception block 

0.56 0.28 0.72 0.26 0.90 0.14 0.80 0.17 

3D-CNN (11 

layers) 

0.51 0.29 0.67 0.29 0.90 0.13 0.78 0.17 

       
  

 

Figure 3 Results for three patients classified by Logistic regression and a 3 

dimensional CNN. 
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was achieved by the CNN with inception block with an AUC 

score of 0.80 Significant performance differences between the 

LR and CNN models were observed for all performance 

measurements.  

The feature weights’ calculation performed on the 

physiological parameters showed that the NIR PI is the most 

important parameter, followed by the TWI, StO2, and OHI 

parameters. 

The outcomes of the classification are visualized in Figure 3. 

IV. DISCUSSSION 

In this work, we evaluated the prediction of cancer based 
on physiological parameters for the first time using the HSI 
data of 52 patients who underwent colorectal surgery. We 
compared several classification models. The CNN showed the 
highest performance with an AUC score of 0.81. Such 
comparison results were also obtained in [15] for the 
discrimination of different healthy tissues (nerve, blood 
vessels, muscle, fat, skin) based on HSI data. We showed that 
a simple 3D-CNN trained with only 35,281 features can 
provide high performance. 

In several works, HSI was used to classify colon cancer 
[5]–[7], [16]. Baltussen et al. achieved the same AUC score of 
0.81 using a larger spectral range (400-1700nm) covered by 
the HS system. We obtained in a previous work a higher AUC 
score of 97 for cancer detection on the same patient dataset but 
using all spectral bands (500-1000nm) [6]. In this work, 
physiological parameters were used as features whose 
computation require fewer wavelengths. As it was investigated 
in [6], physiological parameters reflect clear differences 
between tumor types but also tumor medical pretreatments. To 
capture these differences, more complex classifier models and 
larger datasets are necessary. 

An interesting further medical application of HSI is its 
combination with optical gastrointestinal endoscopy for colon 
cancer diagnosis. New real-time flexible endoscopic HSI 
systems are described in [17]–[19]. Real-time HSI is achieved 
with the selection of a limited number of specific spectral 
bands [7], [20]. Our approach for the prediction of malignant 
tissue is based on physiological parameters that are calculated 
using limited areas of the light spectrum. This tool is 
compatible with real-time endoscopic imaging systems. 
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