
  

 

Abstract— Non-Alcoholic Fatty Liver Disease (NAFLD) is the 

major reason for liver disease globally. Early warning of liver 

disease at the beginning of a progressive disease spectrum is 

critical for reduced mortality and increased longevity. Current 

clinical practices focus on disease management but can be 

improved in terms of screening & early detection. This paper 

focuses on machine learning-based intelligent model 

development using liver functionality and physiological 

parameters for Hepatic Steatosis (Non-alcoholic Fatty Liver) 

screening. Gender-specific models were developed separately. 

Customized data processing techniques were incorporated. 

Publicly available, population data (NHANES-III) was used. 

The maximum sensitivity provided by the models were 

approximately 72% and 71% for male and female, respectively. 

Maximum specificities obtained by the models were 74% and 

75% for male and female, respectively. Performance comparison 

of different models has been discussed. 

I. INTRODUCTION 

Non–Alcoholic Fatty Liver Disease (NAFLD) is a series 
of liver conditions in individuals without any history of 
significant alcohol consumption [1]–[3]. The range of NAFLD 
varies from simple fatty liver to steatohepatitis [1]–[3]. 
Hepatic Steatosis (HS) or Non-Alcoholic Fatty Liver (NAFL) 
is a condition in which an individual’s liver accumulates fat 
but does not have any inflammation or injury [1], [3]. When 
left undiagnosed or untreated, HS can advance to Non-
Alcoholic Steatohepatitis (NASH), potentially leading to liver 
fibrosis, cirrhosis, or carcinoma.  

NAFLD is the largest cause of liver conditions around the 
world [1]. Because of the nature of the disease, and the lack of 
data related to it, current literature reflects the estimates of 
NAFLD prevalence in the population. A 2016 study estimated 
the global NAFLD prevalence as 25.24% and within the USA, 
80 million (estimated) individuals are affected by NAFLD [4].  

Literature indicates that multiple risk factors such as 
obesity, sedentary lifestyle, diabetes (type II), insulin 
resistance, and hyperlipidemia can contribute to NAFLD [1], 
[5]. However, the exact cause for the disease is not known. In 
addition, NAFLD does not show any symptoms in the early 
stages but can progress undetected over time [3], [6]. The 
progression of NAFLD to advanced stages is linked to a higher 
risk of other terminal liver disease and/or high mortality [7]. 
Further, there is no specific cure for NAFLD yet [3]. Current 
guidelines recommend disease management via lifestyle 
intervention [1]. Despite its chronic nature, if detected early, 
NAFLD progression can be slowed down or managed for cure 
(partial or complete reversal) [8], [9]. Studies show that 
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reversal of the disease to a certain extent is also possible, if 
detected at or before a specific stage in the progression [10]. 
Early detection and disease reversal have many benefits - 
improved quality of life, reduced chance for a liver transplant, 
increased longevity, and reduced mortality [10]. Subsequently, 
this results in increased social and economic benefits to the 
society. 

Although there are benefits to early detection, current 
clinical guidelines do not recommend screening for NAFLD, 
due to a lack of cost-effective screening methods [1], [11]. 
Further, there are no specific biomarkers for NAFLD detection 
[1], [2]. Typically, serum-based liver function tests (LFTs) are 
performed to monitor liver health.  LFTs measure the levels of 
enzymes and hormones (i.e., ALT (alanine aminotransferase), 
AST (aspartate transaminase), ASP (alkaline phosphatase), 
Albumin, GGT (gamma-glutamyl-transpeptidase), and 
Bilirubin). Note that the variations of LFTs and relevant 
physiological parameters (HDL, triglycerides, etc.) are not 
specific to NAFLD [12].  

Currently, there are two potential pathways of NAFLD 
detection in normal adults (with no symptoms related to liver 
disease). They are: 1) For adults residing in regions where 
annual checkups for liver functionality (Liver Function Tests 
or LFTs) are conducted, the health care practitioners could 
recommend an individual for further testing (i.e. Ultrasound or 
MRI) based on LFT results. 2) For adults residing in regions 
where current practices do not involve proactive, regular 
health screening, detection of NAFLD occurs randomly while 
being diagnosed/screened/tested for other health conditions 
[3], [6], [13]. In both the above pathways, the health care 
practitioner recommends the suspected NAFLD cases for 
further investigation via additional testing/screening 
(ultrasound, MRI, etc.) based on the liver functionality and 
related physiological parameters of an individual. However, 
this recommendation is subjective among healthcare 
practitioners. In this condition, the practitioner makes the 
decision solely based on available individual data (liver 
functionality, physiological data, etc.). We postulate that the 
relationship of HS with liver functionality and physiological 
parameters determined from population data could provide 
valuable insight about the disease etiology. This might also be 
useful in the decision-making process/screening by the 
healthcare practitioner.  

In recent years, a combination of data access,  
computational power, and advanced mathematical/analytical 
techniques has contributed to intelligent models for healthcare 
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applications, including increased understanding of the 
associated cause and effect relationships [14]–[16]. The goal 
of this study is to investigate the association of HS (NAFL) 
with liver functionality and physiological parameters using a 
population dataset (NHANES). Based on our analysis, no such 
investigation has been conducted before.  

II. PROCEDURE 

In this paper, a publicly available dataset - National Health 
and Nutrition Exam Survey (NHANES) III (1988 – 1994), 
provided by the Centers for Disease Control and Prevention 
was used [17]. NHANES III data are available publicly for use 
by researchers. The institutional review board (IRB) at Purdue 
University determined the data used in this paper to be exempt 
(category-4: IRB-2020-1309). In the following paragraphs, 
data extraction, data analysis, and model training methods are 
explained. 

A. Data extraction 

Adult data (persons aged 18 and above) from the NHANES 
III dataset were used in this paper. The data extraction was 
conducted using a customized program (“Initial extraction 
module”) using SAS 9.4 and further analysis was conducted 
using customized programs (“Analysis module”) developed in 
MATLAB R2020b.  

The initial extraction module retrieved twelve features 
from NHANES III. They are: gender, age, BMI, HDL, plasma 
glucose, AST, ALT, and ASP.  Exclusion criteria were applied 
using three alcohol-related features to fit the criteria of 
NAFLD. “Hepatic Steatosis (HS)” was used as the output 
feature. The HS determination for individuals is further 
described in NHANES III documentation [17]. The parameter 
“Sequential numbers” from the NHANES III dataset was also 
extracted for internal cross-referencing. In this model, the 
observations with missing information in any of the features 
were eliminated. This logic has advantages over the 
conventional approach of estimating missing feature values in 
the dataset.  

B. Data Analysis 

 The “Initial extraction module” was developed in SAS 
9.4 to combine the data files from NHANES III. The features 
of interest were then exported into MATLAB R2020b for 
further analysis using the “Analysis module”.   

 The observations with missing information in any of the 
selected features were deleted. This reduced the dataset size 
from 20,050 observations to 12,195. Next, the dataset was split 
into two sub-datasets based on HS (yes or no). The size of the 
HS sub-dataset was 2,956 and the size of the no-HS sub-
dataset was 9,959. Subsequently, each of the two sub-datasets 
was split further by gender. This logic is supported by findings 
from the literature on the varied implication of NAFLD 
pathogenesis between the genders [18]–[20]. Then, the 
gender-specific alcohol exclusion criteria defined by the 
American Association of Study of Liver Diseases (AASLD) 
were applied. The criteria defines “significant” alcohol 
consumption as consuming >3 drinks/day and >2 drinks/day 
for men and women, respectively [1]. Consequently, 437 Male 
HS, 1,228 Male no-HS, 195 Female HS, and 716 female no-
HS observations were excluded.  

The flowchart for the “Analysis module” is shown in figure 
1. Four derived features were created using the equations (1) – 
(4).  An ALT value of > 33 units/liter (u/l) and > 25 u/l is 
considered above normal for male and female, respectively 
[21]. The upper limits of normal (ULN) for AST in male and 
female are 30 u/l and 20 u/l, respectively [22]. The normal 
level for BMI and diabetes were 25 kg/m2 and 120 mg/dL, 
respectively for both the genders [23], [24]. In the context of 
HS, higher BMI (>25) is considered as a major risk factor [25]. 
Thus, we used 25 kg/m2 as the ULN for BMI.  

                  𝐴𝐿𝑇𝑖% =
𝐴𝐿𝑇𝑖 −𝐴𝐿𝑇_𝑈𝐿𝑁

𝐴𝐿𝑇_𝑈𝐿𝑁
 𝑥 100.        (1) 

                 𝐴𝑆𝑇𝑖% =
𝐴𝑆𝑇𝑖 −𝐴𝑆𝑇_𝑈𝐿𝑁

𝐴𝑆𝑇_𝑈𝐿𝑁
 𝑥 100.        (2) 

                 𝐵𝑀𝐼𝑖% =
𝐵𝑀𝐼𝑖−25

25
 𝑥 100.                   (3) 

    𝑃𝑙𝑎𝑠𝑚𝑎 𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖% =
𝑃𝑙𝑎𝑠𝑚𝑎_𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖 −120

120
 𝑥 100.         (4) 

i = ith sample in the dataset; ALT_ULN: 33u/l - male, 25 u/l - female; AST_ULN: 30 u/l – 

male, 20 u/l – female 

The negative values in the derived features were replaced 
with 0, to indicate “normal”. The positive values were left 
unchanged. 

Figure 1.  Analysis Module - Flowchart  

Class balance is essential prior to training machine learning 
models to avoid poor sensitivities, specifically from a 
healthcare perspective [26]. Data from the majority class (no-
HS) were randomly sampled to match the size of the minority 
class (HS) in both genders, separately. The class balanced sub-
datasets for male and female had 1,038 and 1,212 samples 
each, respectively, in the HS and no-HS categories. The male 
class-balanced training and testing sub-dataset sizes were 
1,454 and 622, respectively. The female class-balanced 
training and testing sub-dataset sizes were 1,696 and 728 
respectively. In this paper, we also assessed an extension of 
the above model that used imbalanced data (male HS:1,038; 
male no-HS:3,177; female HS:1,212; female no-HS:4,591).  

C. Model training 

Machine Learning (ML) models (class-balanced) from 
multiple families (total 17 models): tree-based, ensemble-
based (random forest, boosted trees), K-nearest neighbors, 
support vector machines (SVM) and logistic regression, were 
analyzed. 

The best performing models (SVMs, in this case) are 
reported. SVM models are suitable for binary classification 
(e.g. HS: yes/no). They classify data by using an optimal 
hyperplane and can be implemented using a linear or non-
linear kernel [27]. 
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TABLE I.  PERFORMANCE METRICS– SUMMARY OF 10 RUNS 

aMale, bFemale 

In this study, SVMs with linear, quadratic, and Gaussian 
kernels were implemented. Within the Gaussian kernel-based 
models, three separate kernel scales (0.83, 3.3, and 13) were 
incorporated. All SVM models used a box constraint level of 
1 to avoid overfitting. The models were trained using separate 
training data with 5-fold cross-validation to enhance 
generalization. The trained models were then tested using a 
separate test dataset. The training and testing processes were 
repeated 10-times to compute the average performance 
metrics. The 10-run averages of the class-balanced models are 
summarized in table I. Moreover, the results of the extension 
models using imbalanced data were analyzed. 

III. RESULTS AND DISCUSSION 

Performance of the SVM (Linear, Quadratic and Gaussian- 
Scales 1,2,3) models are shown in table I. For male-specific 
models, the average testing accuracies ranged from 
approximately 67 - 69 % with a maximum standard deviation 
(SD) of 0.018. The average sensitivity ranged from 64 - 72% 
with a maximum SD of 0.023. The average specificity ranged 
from 61 - 74% with a maximum SD of 0.028. The best 
performing model (male) was the Gaussian Scale-II with 69% 
accuracy. The model with Gaussian Scale I provided 72% 
sensitivity (male). For this specific screening application, it is 
preferable to emphasize sensitivity over specificity. Hence, the 
Gaussian scale I model would be preferred. 

For female-specific models, the average testing accuracies 
ranged from approximately 69% - 71% with a maximum SD 
of 0.016. The sensitivity ranged from 67% - 71% with a 
maximum SD of 0.027. Although the maximum specificity of 
75% was obtained with the quadratic SVM model, the 
Gaussian Scale I model with 71% sensitivity is preferred, for 
the above-explained reasons.  

The result from the imbalanced-models (test-data) shows 
very poor sensitivities (i.e., poor detection of HS cases). The 
average accuracy of the imbalanced models increased slightly 
– with a maximum of 78% and 81% for male and female, 
respectively. Interestingly, the specificities were very high 
with a maximum of 98% and 99% for male and female, 
respectively. However, the sensitivities were in the range of 6- 
23% and 6 - 18% for male and female, respectively. This 
information indicated the lack of usefulness of these 
imbalanced models - thus they were not pursued further. 
Detailed results of the imbalanced models are not shown in this 
paper.  

The findings from the class-balanced models demonstrate 
the potential of an intelligent model relating liver functionality 
and physiological parameters with HS. The performance of 
the models could be improved by using other modeling 
techniques and additional relevant data. Once developed, 
tested, and validated, the proposed intelligent model(s) could 
serve as a new, complementary approach for NAFLD 
screening. We postulate that such a validated model(s) could 
be used as a decision support system by the healthcare 
practitioners at the point-of-care settings.  

The performance of this model is similar to the model(s) 
in our previous work [15]. The previous work involved 
different predictor features and utilized a synthetic data 
generation approach for balancing the output classes (HS). The 
novelty of the model(s) (current paper) is in the use of original 
data without any synthetic generation. Therefore, we are 
pursuing this approach.  

IV. CONCLUSION AND FUTURE WORK 

In this paper, machine learning-based (SVM), intelligent 
models (separate for male and female) for NAFLD screening 
were evaluated. The male-specific model demonstrated 
approximately 72% sensitivity and 74% specificity. Similarly, 
the female-specific model provided 71% and 75% sensitivity 
and specificity, respectively.  

NAFLD screening and diagnosis is a complex issue with 
no specific biomarkers but with multiple metabolic co-
morbidities. Our current and future work involves developing 
and identifying advanced models for NAFLD screening. In 
parallel, we are testing the developed models on different 
population datasets. We might also consider including the 
underweight BMI category (<18.5 kg/m2) in the algorithm of 
our model. We envision that such a complementary screening 
approach could contribute to detect NAFLD at an early stage, 
in a proactive manner. Subsequently, this effort could 
contribute to achieve better health outcomes and enhanced 
quality of life for people.  
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