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Abstract— Reducing the training time for brain computer
interfaces based on steady state evoked potentials, is essential
to develop practical applications. We propose to eliminate the
training required by the user before using the BCI with a
switch-and-train (SAT) framework. Initially the BCI uses a
training-free detection algorithm, and once sufficient train-
ing data is collected online, the BCI switches to a subject-
specific training-based algorithm. Furthermore, the training-
based algorithm is continuously re-trained in real-time. The
performance of the SAT framework reached that of training-
based algorithms for 8 out of 10 subjects after an average of
179 s ±33 s, an overall improvement over the training-free
algorithm of 8.06%.

I. INTRODUCTION

The development of practical and functional brain com-
puter interfaces (BCIs) for long term users is a significant
contribution allowing the use of such systems in the real-
world. Even though the performance of BCIs has remarkably
improved, the requirement of long and tedious training
sessions prior the use of the BCI remains an issue, reducing
the practicality of these systems [1]. Since electroencephalo-
graphic (EEG) signals, which are the typical inputs to such
systems, vary considerably not only across individuals but
also across and within the same session, training is required
to characterize the user’s neural response and improve the
detection performance of the BCI.

In this work we focus on steady-state visual evoked po-
tential (SSVEP)-based BCIs which require users to attend to
flickering visual stimuli. These evoke a neural response con-
sisting of oscillatory activity at the fundamental frequency
and harmonics of the flickering visual stimuli. The SSVEP-
based BCI identifies the SSVEP response and generates a
particular control signal that is associated to the stimulus the
user attends to. In the training process of SSVEP-based BCIs
each user is required to attend to every stimulus of the BCI
application for several trials in order to collect the subject-
specific training data. The training time is thus affected
by the number of stimuli in the BCI application and the
number of trials required per stimulus. It is known that the
performance of subject-specific detection methods improves
with increased number of trials per stimulus and therefore
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calibration may become very time consuming, especially for
BCIs with large number of stimuli.

Recently, there have been several proposed solutions to
reduce or eliminate training for SSVEP-based BCIs. These
have been based on different transfer learning approaches, for
example, transfer learning across subjects [2], [3], across ses-
sions [4], [5], stimuli [6] and EEG devices [7]. These meth-
ods achieved better performance than training-free methods,
but in no case was better performance achieved than when
using the subject’s own training data for a given session. In
fact some transfer learning techniques have been followed
by adaptive learning in which the algorithms or classifiers
are gradually updated with individual data in real-time [4],
[8]. This allows for changes in EEG activity in real-time, for
example, as the user becomes fatigued over time, the SSVEP
algorithm is adapted to compensate for any changes in the
brain signals.

Transfer learning and adaptive learning are a good practi-
cal solution for SSVEP-based BCIs. We propose to address
this challenge by completely eliminating the prior training
required by an individual subject and collect individual
training data in real-time as the user uses the BCI. A training-
free SSVEP detection method is first used by the user,
then online feedback is obtained from the user by rejecting
a selection. This can be done by for example, using eye
blinks obtained from EEG data. In this manner training data
may be collected in real-time. Once enough training data
is available, the training-free SSVEP algorithm is replaced
by a subject-specific SSVEP algorithm that is trained by
the online-collected training data. Furthermore, the training-
based algorithm is continuously updated with new online-
collected training data. To the best of our knowledge this is
the first SSVEP-based BCI that switches from a training-free
method to a subject-specific method in real-time.

II. MATERIALS AND METHODS

A. Proposed method

Figure 1 is a detailed flow chart of the proposed switch
and train (SAT) framework for SSVEP detection.

1) Switching mechanism: Initially, the proposed BCI uses
a training-free algorithm on unlabelled trials to process and
estimate a target. Once a trial is labelled, the target is shown
to the user. If the estimated target is incorrect, the user carries
out an eye gesture, such as a double blink which may be
detected from the EEG signals, providing a feedback signal
to stop the corresponding control function of the BCI. In this
case the corresponding EEG data is discarded; conversely if
the user does not indicate an incorrect detection, the trial data
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is stored to be used as training data. This process is repeated
until the minimum number of training trials per target are
collected to train the supervised training model. Different
subject-specific algorithms require a minimum number of
training trials before their performance exceeds that of the
training-free method. Once enough training trials are col-
lected, this is trained using a supervised training algorithm
and switches to processing new unlabelled trials with the
trained model.

2) Adaptive mechanism: Once the system switches to
make use of a trained model, new correct trials are con-
tinuously stored as training data. When more representative
trials of each target are available, the model is retrained. As a
result the performance of the subject-specific algorithm may
improve in time as new training data is added.

Fig. 1: Flow chart of the proposed real-time training and
adaptive framework for an SSVEP-based BCI.

B. Training-free and subject-specific methods

The proposed method can be used with any training-
free and subject-specific training methods. In this work
the standard canonical correlation analysis (CCA) [9] has
been employed as the training-free method since this has
been the most extensively used multi-channel training-free
detection method for SSVEP detection with generally good
performance. The Combined-CCA [10] and the task-related

component analysis (TRCA) [11] methods are state-of-the-
art subject-specific methods for SSVEP detection that have
both achieved significantly high performance in terms of
classification accuracy and information transfer rate (ITR)
compared to other methods [1]. Both of these methods are
used in this work to demonstrate the effect of reducing
training time for subject-specific methods using the proposed
framework. The filter bank technique described in [11] was
employed as a pre-processing step in both the subject-specific
methods.

C. SSVEP dataset

The proposed framework was evaluated using a 12-class
frequency and phase modulated SSVEP dataset acquired
from 10 subjects that is freely available online [12]. The
12 stimuli were presented simultaneously in matrix form,
each having different frequencies ranging between 9.25 Hz
to 14.75 Hz and phases between 0π to 1.5π . EEG data
was recorded with eight Ag/AgCl electrodes covering the
occipital region. At the beginning of each trial, a visual cue
appeared for 1 s to indicate the target stimulus. After that,
all stimuli started to flicker simultaneously for 4 s. Each
stimulus was selected in a random order for 15 repetitions.
The EEG data was down-sampled to 256 Hz and then band-
pass filtered from 6 Hz to 80 Hz. A latency delay in the
visual system of 135 ms was allowed after each stimulus
onset to cater for eye-movement delay.

D. Real-time simulation

The data was split in such a way to use 80% of the data for
implementing the proposed SAT framework and 20% of the
data as a hold-out set for comparing the proposed method
with the training-free approach. This split was repeated 5
times to randomize the train and test sets. In the training set
the data was again randomised for 10 repetitions such that
the order of the trials being processed by SAT mimicked the
actual use of the system. Since both TRCA and Combined-
CCA require a minimum of 2 training trials, the minimum
time for the training-free method to switch to the subject-
specific method is after 24 trials (12 stimuli x 2 training
trials). However, since the trials were randomised, the time
taken for the switch and thereafter the training to occur
may take longer. The hold out test was used to evaluate
the expected classification performance of the system on
a new dataset given the training stage the algorithm is in.
Specifically, at the start, only the CCA algorithm is available
so the hold out set is used to evaluate performance using
CCA where no training is done. As soon as 2 trials per target
become available, the TRCA/Combined-CCA algorithm is
trained and again the hold out set is used to quantify the
expected performance with the newly trained algorithm. The
process continues by retraining every time a new trial per
class is available, each time quantifying performance on the
hold out set. Different time windows between 0.5 s and 2
s were considered in this analysis. In the proposed SAT
algorithm, the system requires feedback from the user to
be able to extract the training data. In the lack of such user
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feedback, in this simulation, the label given by the CCA
algorithm is compared to the true label and in the case of
a correct classification, the corresponding trial data is saved
for training.

III. RESULTS
The proposed SAT framework was tested on the available

dataset using time windows ranging from 0.5 s to 2 s in
steps of 0.5 s. Since in this analysis, the switch from CCA
to Combined-CCA/TRCA is based on the performance of
CCA, it was realised that with shorter time windows where
classification performance is low, there were a lot of cases
where the switch did not occur. However, with a 2 s time
window, a switch occurred in every realisation of the cross-
validated framework, for 8 out of 10 subjects. For Subject 3
a switch only occurred 60% of the time and no switch was
recorded for Subject 1. Based on this, the following results
will focus on the results using a 2 s time window.

The results for the proposed SAT framework, averaged
over 5 cross validations and 10 repetitions each, are shown
in Figure 2 for each subject. It can be observed that there
was a sharp increase in performance when the switching of
the SSVEP detection method occurred, reaching the perfor-
mance of the subject-specific methods. However, Subject 1
never switched to a training based algorithm and hence the
performance is capped to that of CCA. This is discussed
further in the next section.
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Fig. 2: Averaged classification accuracy (%) for each subject
using the SAT framework with CCA as the training-free
algorithm and (a) Combined-CCA and (b) TRCA as the
subject-specific algorithms with 2 s time windows.

Table I shows the results for each subject using CCA with
no training, Combined-CCA and TRCA with 2 training trials,
and the proposed SAT after switching with 2 training trials
for 2 s time windows. The proposed method reached the
performance of the subject-specific algorithms excluding the
results for Subjects 1 and 3 who did not switch or switched
for only a fraction of the realisations respectively. SAT
with Combined-CCA obtained an average accuracy over 8
subjects of 99.13% comparable to 98.24% obtained with the
training based Combined-CCA. SAT with TRCA obtained
an average accuracy over 8 subjects of 99.66% comparable
to 98.22% obtained with the training based TRCA.

Figure 3 shows the classification accuracy using the pro-
posed framework averaged over all subjects after eliminating

TABLE I: Classification accuracy (%) for each subject
averaged across 5 cross validations and 10 randomised
repetitions.

Classification accuracy (%)

Subject CCA Combined-
CCA TRCA

SAT with
Combined

-CCA

SAT
with TRCA

1 41.11 89.83 97.28 41.11 41.11
2 81.11 91.61 96.33 94.56 98.44
3 48.89 62.89 77.67 57.89 67.44
4 84.44 99.72 99.61 99.89 99.94
5 98.89 98.83 100.00 99.50 100.00
6 90.56 98.28 100.00 99.67 100.00
7 98.89 99.94 100.00 100.00 100.00
8 92.78 98.83 97.83 99.72 98.89
9 100.00 99.89 100.00 99.94 100.00

10 86.11 98.83 100.00 99.72 100.00

Subjects 1 and 3 who did not seem to always gain from the
proposed SAT framework. The results demonstrate a clear
jump in performance as soon as the SSVEP detection algo-
rithm switches to Combined-CCA or TRCA with 2 training
trials per target. The performance increases marginally as the
number of training trials is increased.
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Fig. 3: Classification accuracy (%) averaged across subjects
using the proposed SAT framework with 2 s time windows.

IV. DISCUSSION
A. Identifying trials for training

The proposed framework requires user feedback to reject
incorrectly classified targets. The remaining trials are then
used for training of the subject-specific methods. For this
to work the proposed eye gesture carried out by the user
needs to have a true positive rate close to 100% so that
incorrect trials are not fed for training. A preliminary analysis
on double blink detections based on blink peak heights and
duration between successive blinks, showed that a detection
accuracy of 99.79% is achievable over three subjects with
one electrode placed at FP1. The g.tec g.SCARABEO EEG
acquisition system was used for this analysis. The user can
also be given the possibility of repeating the eye gesture
during the time that the BCI is providing feedback to the user
or generating a control function, so as to reduce the chance
of an eye gesture being unrecognised. Since the training
algorithm is being continuously updated, the effect of the
erroneously labelled data will become less significant in time.

B. Suitability of the SAT framework across subjects

The results of Table I showed that the proposed framework
improved the classification performance for 8 out of 10
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subjects. For Subjects 1 and 3, a switch did not always occur.
There are several reasons why this is happening. One reason
is that the data we are using is limited to 12 training trials per
target and more trials may be required for poorly performing
subjects to accumulate the minimum number of correct trials
for all stimuli to switch to the training based algorithm.
Secondly, if trials associated with a specific stimulus are
never correctly classified by CCA, then the switch will not
be made under the current framework. For example, the
12.75 Hz stimulus for Subject 1 was never detected with
CCA using a 2 s time window, with the problem repeated
more often as the time window is reduced. Future work
will consider relaxing the requirement of having an equal
numbers of training trials for each stimulus. It may also
be wise to consider a relatively long time window at the
beginning so as training data is made available as quickly as
possible, but then shift to a shorter time window, of around
0.5 s or 1 s, where TRCA and Combined-CCA are still
known to perform well [11].

For those subjects for whom sufficient training data was
available, the proposed SAT framework succeeded in boost-
ing the performance of CCA to that achievable by Combined-
CCA and TRCA, without prior BCI training. This transition
occurred as soon as the minimum number of 2 training trials
per target became available.

C. Training Cost Requirements

In our previous work [1] we have defined the training
cost for an SSVEP-based BCI system as: Training Cost =
F ×K × T × S, where F represents the number of stimuli
in the user interface, K represents the number of training
trials per stimulus, T represents the training trial length and
S represents the number of subjects used for training. For
a training based system such as Combined-CCA or TRCA,
the training cost for an interface with 12 stimuli and 2 trials
per stimulus, amounts to 99.24 s. This considers a 2 s time
window, 0.135 s gaze delay, 1 s cue and 1 s break between
trials. In comparison, the training time for the proposed
SAT framework is 0 s, the same as that of training-free
methods, since no training trials are required for a user
to operate the BCI. However, the user will only reach the
performance of the training based methods after a period of
time, during which time the BCI performance will be capped
to that of the training free SSVEP detection algorithm. The
average number of trials across subjects, excluding Subjects
1 and 3, until the switch is made was found to be 57 trials.
Considering once again a 2 s time window, a 0.135 s gaze
delay and a 1 s feedback time, during which the user can also
reject the trial through an eye gesture, the average time to
switch was found to be 179 s. Thus the user may either invest
in 99.24 s of training before using the system and expect a
classification accuracy beyond 95% from the beginning or
else avoid prior training completely, start using the system
with a subject-dependent accuracy ranging between 80-100%
and expect to switch to a performance above 95% after 179
s. The advantage of the latter is that the user is unaware of
any training being carried out and can use the system right

away with relatively good performance.

V. CONCLUSIONS
This work proposed a Switch-and-Train (SAT) framework

for SSVEP-based BCIs. The major advantage of this frame-
work is that the user does not have to undergo a time consum-
ing training session before using the BCI system. The initial
classification performance of the BCI system will be equal
to that of the training-free algorithm, however, once enough
training data is collected online, the BCI system experiences
a relatively sharp increase in classification performance,
reaching the level expected with standard, subject-specific,
training based SSVEP detection algorithms. The results over
8 subjects showed that a switch to the Combined-CCA
or TRCA algorithm was achieved after an average of 179
s, an overall improvement over the training-free algorithm
of 7.53% or 8.06% when considering a 2 s time window
and a switch to the Combined-CCA or TRCA algorithm
respectively. Future work will investigate how a switch to
the training based algorithm can be made in a shorter time,
possibly by allowing training of the algorithms even when
unequal trials per target are available for training.
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