
  

 

Abstract—Central Line Tutor is a system that facilitates real-

time feedback during training for central venous 

catheterization. One limitation of Central Line Tutor is its 

reliance on expensive, cumbersome electromagnetic tracking to 

facilitate various training aids, including ultrasound task 

identification and segmentation of neck vasculature. The 

purpose of this study is to validate deep learning methods for 

vessel segmentation and ultrasound pose classification in order 

to mitigate the system’s reliance on electromagnetic tracking. A 

large dataset of segmented and classified ultrasound images was 

generated from participant data captured using Central Line 

Tutor. A U-Net architecture was used to perform vessel 

segmentation, while a shallow Convolutional Neural Network 

(CNN) architecture was designed to classify the pose of the 

ultrasound probe. A second classifier architecture was also 

tested that used the U-Net output as the CNN input. The mean 

testing set Intersect over Union score for U-Net cross-validation 

was 0.746 ± 0.052. The mean test set classification accuracy for 

the CNN was 92.0% ± 3.0, while the U-Net + CNN achieved 

92.7% ± 2.1%.  This study highlights the potential for deep 

learning on ultrasound images to replace the current 

electromagnetic tracking-based methods for vessel segmentation 

and ultrasound pose classification, and represents an important 

step towards removing the electromagnetic tracker altogether. 

Removing the need for an external tracking system would 

significantly reduce the cost of Central Line Tutor and make it 

far more accessible to the medical trainees that would benefit 

from it most.    

 INTRODUCTION 

A medical student’s path from learning to mastering a new 
skill is one paved by deliberate practice, expert guidance and 
real-world experience. The high stakes nature of medicine also 
necessitates that students reach a minimum level of 
competency before practicing on patients. Raising students to 
this level via medical simulation has gained traction in recent 
years, particularly as the technologies to support these systems 
have become cheaper and more widely available [1]. 
Simulation has the advantage of mitigating risk to patients 
while also improving patient outcomes and student confidence 
in clinical scenarios [2].  Feedback from expert instructors and 
clinicians is of equal importance to practicing a new skill [3]. 
Self-assessment among medical students is a poor means of 
evaluating performance and informing future practice [4], and 
as a result providing meaningful feedback in a simulation 
environment is critical to trainee learning outcomes. 

Central venous catheterization (CVC) is a clinical skill 
taught in numerous residency programs and involves the 
cannulation of a major vessel for high-throughput venous 
access. With a long-term complication rate of more than 15% 
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and over 5 million performed in the United States each year, 
the morbidity associated with CVC is substantial [5]. 
Furthermore, the risk of complications associated with CVC is 
up to 35% higher when the procedure is performed by a 
novice, highlighting the significant learning curve associated 
with correctly performing the procedure [6]. To curb this high 
complication rate, the standard of care for CVC now requires 
the use of ultrasound (US) to navigate the procedure. While 
this technique has been proven to reduce the morbidity 
associated with CVC [7], the hand-eye coordination it requires 
may increase the training necessary to reach a high level of 
competency. 

Hisey et al. (2018) developed the Central Line Tutor 
system to provide students with a safe, realistic, and interactive 
training environment for learning CVC [8]. This platform 
combines an industry standard venous access phantom with an 
electromagnetic (EM) tracker and a webcam. The EM tracker 
supports various visualization and task recognition 
functionalities by monitoring the pose of the needle, US probe, 
and phantom. These EM-based features include vessel 
segmentation in the US images, recognition of distinct US 
poses, and 3D visualization of the needle and US probe during 
training. The RGB camera is primarily used for workflow 
recognition, which is the key concept behind Central Line 
Tutor that facilitates step-by-step instructions and real-time 
analysis of performance.  

While the EM tracking system does serve several 
important roles in the Central Line Tutor system, it also has 
substantial disadvantages related to cost and complexity. The 
use of EM tracking effectively doubles the cost of the existing 
Central Line Tutor system. It also introduces cumbersome 
tracking elements and requires frequent recalibration of 
tracked tools to ensure optimal performance. A critical long-
term goal in the development of this training system is to 
eliminate the need for EM tracking altogether. A commercial 
optical tracker would not be suitable for this system either, 
since securing bulky optical markers would alter the geometry 
of the tools. To eliminate the reliance of Central Line Tutor on 
EM tracking, alternative methods for vessel segmentation, US 
pose classification, and 3D tool visualization must be 
developed that strictly make use of RGB video and US data. 

In this study, we focus on implementing techniques for 
vessel segmentation and US pose classification that do not 
require an external tracking system. The existing method for 
vessel segmentation uses the EM system to track the position 
of the US probe relative to 3D models of the vessels. In the 
absence of tracking, there may be sufficient information in the 
US images themselves for a deep learning system to directly 
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segment the vessels. Furthermore, the use of deep learning for 
segmentation of neck vasculature in US images has been 
demonstrated previously in the literature [9].  

To recognize tasks that use the US probe, Central Line 
Tutor analyzes the pose of the probe provided by the EM 
tracker. This probe pose is used to distinguish between “long-
axis” scans, when the plane of the ultrasound image is parallel 
to the direction of the vessel, and “cross-section” scans, when 
the probe is perpendicular to these vessels. The appearance of 
the vessels in the US images also correlates strongly with the 
current type of scan being completed.  We hypothesize that, in 
the absence of EM tracking, a system capable of recognizing 
these differences in vessel appearance from the US images 
would be able to classifying the type of scan being performed. 

The purpose of this project is to assess the viability of 
replacing EM-based vessel segmentation and US pose 
classification with deep learning solutions that strictly require 
US images. 

 MATERIALS AND METHODS 

 Model Architecture 

For vessel segmentation we decided to use the U-Net 

architecture. The U-Net is a deep architecture proposed by 

Ronneberger et al. (2015) for segmentation of biomedical 

images that consists of a contracting path followed by an 

expanding path [10]. It has quickly become a popular 

segmentation algorithm across much of computer vision, with 

many different variations of the architecture available online. 

The specific implementation of the U-Net that was selected for 

this task was created by Ungi et al. within the AIGT repository 

of the SlicerIGT toolkit [11, 12]. It has been previously shown 

to perform well with US segmentation and is largely optimized 

for use with US images, making it an ideal candidate for this 

project. 

For the classification task, we decided to try two different 

network architectures. The first, referred to here as “CNN”, 

was a shallow architecture with 2 convolutional layers, a max 

pooling layer and a dense layer followed by a softmax 

activation layer (Figure 1). The second architecture, referred 

to as U-Net + CNN, started by segmenting the US image using 

the trained U-Net before passing the segmented image to the 

shallow CNN. The idea behind the U-Net + CNN network was 

to minimize the extraneous noise that the classifier had to deal 

with and provide only the salient information in the US 

images. Both networks output a vector of size 3, indicating 

which of the 3 possible pose classes a given US image 

belonged to. The first two classes correspond with specific 

scans performed during central line insertion, namely long-

axis and cross-section scans. The third class identifies when 

the probe is in neither of the previous two poses, and is 

classified as an “undefined” pose.  

 

B. Data 

The dataset was obtained from 40 tracked US sequences 

collected by 4 medical students and 4 anesthesiologists using 

the Central Line Tutor system. To train the U-Net, a 

segmentation ground truth image had to be generated for each 

US image. This was accomplished by taking advantage of the 

spatial tracking data associated with the US images, as well as 

a previously generated 3D model of the vessels in the 

phantom. After manually fine-tuning the placement of the 

vessel models for each tracked sequence, the intersection of 

the vessel models with each tracked US image was extracted.  

Following generation of the vessel segmentations, each 

image had to be further identified as either "cross-section", 

"long-axis" or "undefined" based on the probe position at the 

time of image capture. Pose labelling was performed by 

annotating each sequence with the timestamp of each pose 

transition, followed by labeling each frame with its 

corresponding US probe pose. Modules within the SlicerIGT 

DeepLearnLive extension were used to facilitate this labelling 

as well as generate the ground truth segmentations 

(github.com/SlicerIGT/aigt/tree/master/DeepLearnLive). The 

result was a set of 32,101 US images with corresponding 

segmentations and pose labels. The pose label distribution 

within this dataset was approximately 60% "undefined", 33% 

"cross-section" and 7% "long-axis". The class imbalance in the 

input data was preserved since this relative proportion of each 

class type is expected in real-world datasets this classifier will 

encounter.  

C. Training 

 A cross-validation testing pipeline was used to ensure the 

testing results reflected the architecture's performance on 

unseen images. This approach used a leave-two-users-out 

Fig. 1. Classification network architecture.  
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scheme, wherein the images from one trainee and one expert 

were reserved for testing in each round while the rest of the 

data was used for training and validation. This scheme yielded 

testing data that matched the variation expected in real-world 

use, since a single participant will capture many consecutive 

sequences over the duration of a training session and the 

performance of each user will vary. Furthermore, an even split 

of novices and experts ensured that a broad spectrum of user 

skill level was captured in each testing set.   

 E. Evaluation 

 The performance of the U-Net was evaluated using 

Intersect over Union (IoU). This metric is a standard means of 

evaluating segmentation and object detection performance, 

and tends to be the preferred method over using per-pixel 

accuracy as it better captures overall structural similarities 

[13]. A custom loss function was created to optimize for IoU 

directly during U-Net training. Both the U-Net and classifier 

were trained for 20 epochs. Classification performance on the 

testing set was evaluated using accuracy, precision and recall, 

while the loss function used during classifier training was 

categorical cross-entropy.  

 RESULTS AND DISCUSSION 

 U-Net Performance 

The test set IoU score for each of the folds was 0.731, 

0.817, 0.693 and 0.743, respectively. This yielded a mean test 

set IoU across the 4 folds of 0.746 ± 0.052. Figure 3 shows an 

example of the U-Net segmentation performance in fold 0 

compared to the input segmentation and original US images 

across all 3 probe pose classes. 

  Classifier Performance 

  The mean test set classification performance for U-Net + 

CNN was an accuracy of 92.7% ± 2.1%, while CNN achieved 

an accuracy of 92.0% ± 3.0. Table 1 shows the values for 

mean accuracy, mean weighted precision, and mean weighted 

recall for both networks. Tables 2 and 3 show the confusion 

matrices for the U-Net + CNN architecture and CNN 

architecture, respectively. 

TABLE I.   OVERALL CLASSIFIER PERFORMANCE 

TABLE II.  U-NET + CNN CONFUSION MATRIX 

 Cross-section Long-axis Undefined 

Cross-section 91.5% 4.7% 3.8% 
Long-axis 25.1% 52.2% 22.7% 
Undefined 1.2% 1.0% 97.8% 

TABLE III.  CNN CONFUSION MATRIX 

 Cross-section Long-axis Undefined 

Cross-section 88.5% 17.1% 5.7% 
Long-axis 29.1% 68.4% 13.8% 
Undefined 1.3% 2.3% 96.4% 

 

  Discussion 

The performance of the U-Net in vessel segmentation is 

encouraging based on the IoU scores and qualitative accuracy 

of the predicted segmentations. The low standard deviation in 

IoU performance between test sets suggest that the network 

performs well on unseen data. The extremely high contrast 

probability map output by the network suggests a high degree 

of confidence about the predicted segmentations, meaning 

minimal thresholding is necessary to refine the output. US 

images taken in the “cross-section” and “undefined” 

orientation tend to be of a qualitatively higher accuracy than 

those of the “long-axis” category. This is likely due to the 

occasionally ambiguous and noisy nature of images taken 

from this probe pose, with vessels appearing at unusual 

orientations and cut off at extreme angles.  

 The classifier results suggest that using the U-Net to 

segment input images before performing classification does 

confer a slight accuracy advantage. Analysis of the confusion 

matrices for these networks suggests that the CNN approach 

is more prone to falsely predicting the long-axis or cross-

section class. The U-Net + CNN architecture is more likely to 

predict the undefined class when it is incorrect, meaning that 

it defaults to the base state of “no US scan occurring” when 

the scan type is unclear. This could be a result of the U-Net 

correctly returning blank segmentations for noisy images that 

do not show the vessels, and therefore simplifying the 

classification task for the CNN. As a result, the U-Net + CNN 

approach may be better suited to task recognition, since false 

positives that predict the undefined class are far less likely to 

throw off an overall task classification than an erroneous 

long-axis or cross-section prediction. This problem of 

Network 

Architecture 

Mean 

Accuracy 

(%) 

Mean Weighted 

Precision (%) 

Mean 

Weighted 

Recall (%) 

U-Net + CNN 92.7 ± 2.1 92.6 ± 1.3 92.6 ± 1.8 

CNN 92.0 ± 3.0  92.9 ± 2.0 92.0 ± 3.0 

 

Fig. 3. Performance of U-Net tested on participant 4 compared to input 
segmentation and original US image. Rows are labelled according to 
their corresponding pose label. Note that the U-Net segmentation is a 
probability map that has not been thresholded. 
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occasional misclassifications can be further mitigated by 

taking several of the previous frames into account and using 

a majority voting technique. Since US tasks tend to occur in 

large consecutive blocks of frames, analyzing the 

neighbourhood around a given frame would have the effect of 

smoothing over sporadic classification errors. 

A major limitation of this study is the use of a single 

venous access phantom to capture the full dataset. In practice, 

this system will need to generalize to any standard central line 

insertion phantom. Variation in material properties and vessel 

geometry among different phantoms may pose challenges for 

deep learning networks trained on a single phantom. 

Furthermore, performance may suffer on phantoms designed 

for other central line insertion sites like the subclavian and 

femoral veins. Testing this method on multiple central line 

phantoms will be an important future study to understand how 

generalizable this deep learning approach is. 

The main next step for this research will involve 

integrating the vessel segmentation and US pose classification 

networks into Central Line Tutor and evaluating their 

performance. Of primary interest will be the task recognition 

accuracy compared to the existing EM gold standard. 

Completely removing the EM tracker will also require 

development of a new method for needle-based skills 

assessment. Comparing the predictive power of different 

quantitative metrics for trainee evaluation is a well-defined 

problem [14], and future research will explore how best to 

extract needle-based performance metrics from RGB and US 

images. While the long-term goal of replacing all EM tracking 

in Central Line Tutor is a non-trivial task, the potential 

benefits in terms of reduced cost and system complexity are 

well worth the effort.  

 CONCLUSION 

Providing automated feedback and instruction to medical 

trainees via task recognition has the potential to improve 

access to quality medical education, and reducing the cost of 

such systems is a critical consideration. In Central Line Tutor, 

the use of deep learning for vessel segmentation and US probe 

pose classification is an important step towards removing the 

external tracking system altogether. This study suggests that 

both tasks can be accomplished using deep learning at a level 

of accuracy sufficient for training purposes, and future work 

will be aimed at validating the performance of this classifier 

within the Central Line Tutor system. 
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