
  

  

Abstract— Neuromodulation treatments for chronic pain are 
programmed with limited knowledge of how electrical 
stimulation of nerve fibers affects the dynamic response of pain-
processing neurons in the spinal cord and the brain. By modeling 
these effects with tractable representations, we may be able to 
improve efficacy of stimulation therapy. However, pain 
transmitting neurons in the dorsal horn of the spinal cord, the 
first pain relay station in the nervous system, have complex 
responses to peripheral nerve stimulation (PNS) with 
nonlinearities and history effects. Wide-dynamic range (WDR) 
neurons are well studied in pain models and respond to 
peripheral noxious and non-noxious stimuli. We propose to use 
linear parameter varying (LPV) models to capture PNS 
responses of WDR neurons of the deep lamina in the dorsal horn 
in the spinal cord. Here we show that LPV models perform 
better than a single linear time-invariant (LTI) model in 
representing the responses of the WDR neurons to widely 
varying amplitudes of PNS current. In the future, we can use 
these models alongside LPV control techniques to design closed-
loop PNS stimulation that may accomplish optimal pain 
treatment goals. 
 

Clinical Relevance— Electrical nerve stimulation as a therapy 
for chronic pain is in need of a more informed approach to 
programming. By describing the effects of stimulation on the 
pain system with tractable mathematical models, we may be able 
to titrate the stimulation to more effectively treat chronic pain. 

I. INTRODUCTION 

Chronic pain is a significant burden to public health, with 
estimates of 11-40% prevalence in the United States[1]. 
Opioids have been used as the primary treatment in the past 
but can be extremely addictive and have overdose potential. 
Meanwhile, neuromodulation by electrically stimulating nerve 
fibers has shown promise as a replacement with fewer side 
effects[2]. FDA approved targets for stimulation include the 
spinal cord, dorsal root ganglion, and peripheral nerves of the 
trunk[3]; but many more are being investigated in clinical 
trials. Across all applications, most programming (selective 
delivery of frequency, pulse width, and spatial pattern) of the 
electrical stimulation is done by trial and error and is held 
constant for weeks to months at a time in patients. This type of 
neuromodulation has limited efficacy for patients, with 
generally about 60% of patients reporting greater than 50% 
reduction in pain score, and therapeutic effects often decrease 
over time[4]. There is a need to better understand and 
characterize the dynamic effects of stimulation on the pain 
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system for the further development and improved 
programming of neuromodulation for chronic pain treatment. 

When you damage tissue, such as a paper cut, a primary 
sensory neuron specific to pain (nociceptor) fires a series of 
action potentials down its axon and synapses in dorsal horn 
neurons, including WDR neurons (often in the deep lamina) 
and nociceptive specific neurons (more in the more superficial 
laminae). The WDR neurons, of which many are projection 
neurons, integrate information from primary sensory neurons 
and interneurons to act as the first major relay station in the 
pain pathway, sending their axons, along with others, to the 
thalamus in the brain. The thalamus then relays this 
information to cortical areas to sense, think about, and 
emotionally respond to the painful stimulus.  

The WDR neuron is particularly interesting for receiving 
both non-noxious A-fiber and noxious C-fiber inputs, 
encoding pain intensity and showing dynamic changes in 
excitability after repeated noxious stimulation, and has been 
well-studied in rodents and non-human primates. Under 
healthy conditions, its response largely consists of two 
components in response to a single high-intensity electrical 
stimulus, first as it receives information from large-diameter 
Aβ fibers (non-noxious) and medium-diameter Aơ fibers (A-
component) and second as it receives nociceptive information 
from the small-diameter C fibers (C-component, Fig. 1). In 
chronic pain models, the separation between the two 
components become less clear and often there is an increase in 
the underlying base firing rate (spontaneous activity)[5], [6].  

In the past, efforts to mathematically characterize the 
WDR neurons responses have spanned very complex, 
mechanistic models, to very simple linear time-invariant (LTI) 
models[7], [8]. Mechanistic models can become too complex 
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Figure 1. Anatomy of peripheral nerve fibers entering the spinal cord 

and transmitting information through wide dynamic range neurons 

(marked W).  
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to be used for therapeutic stimulation development; on the 
other hand, LTI models fail to capture the nonlinearities 
produced by the different activation thresholds for pain and 
simple touch receptors. By definition, a LTI model creates one 
response that scales with the amplitude of the input. Thus, it is 
unable to capture these nonlinearities and history effects 
observed in dorsal horn neuron responses. 

In this study, we aim to create a tractable computational 
model to represent and predict the WDR firing responses to 
varying amplitudes of peripheral nerve stimulation (PNS). 
Specifically, we hypothesize that a linear parameter varying 
(LPV) model will outperform a single LTI model and will be 
able to more accurately represent and predict responses of 
WDR neurons to PNS. LPV models are simply a set of LTI 
models across a space of scheduling parameters. These 
scheduling parameters can vary with time and input[9]. There 
exists theory to utilize these LPV models in control design, 
allowing for future development of pain therapeutics[10], [11]. 

II. METHODS 

A. Data Collection and Preprocessing 
All procedures were approved by the Johns Hopkins 

Animal Care and Use Committee. One male Sprague-Dawley 
rat underwent spinal cord injury at T10 vertebra level to 
generate a central neuropathic pain model. After recovery, the 
rat underwent anesthesia and a single WDR neuron was 
isolated in the deep layers of the dorsal horn near level lumbar 
L4. Single unit extracellular electrophysiology was recorded 
at 10 kHz (Fig. 2A). Ipsilaterally, bipolar PNS was delivered 
to the peripheral receptive field of WDR neurons in the hind 
paw. A stimulus response (SR) curve was generated by 
stimulating with 0.2-10 mA of current over 10 pulses, allowing 
transient of carryover effects of the simulation in the pain 
system to diminish between pulses (about 30 seconds interval); 
this was repeated for a second trial (10-minute interval). Single 
action potentials were isolated from the WDR recordings by 
filtering the data between 300-3000 Hz before applying a 
simple thresholding method. Firing rate curves were then 
generated by down-sampling to 1000 Hz, applying a 100-point 
Gaussian distribution to each spike location, and smoothing 
further where firing was sparse. The two trials’ firing rate 
curves were then averaged. 

The resulting firing rates (Fig. 2B) display the typical 
increasing SR behavior and match with previous literature[12]. 
When electrical stimulation is delivered at small amplitudes 
(0.2 mA – 2 mA), only low-threshold A fibers are activated, 
and the WDR neuron shows firing in a simple A component 
(peak). As the amplitude of the stimulation is increased, more 
action potentials appear in the A component before the 
stimulation becomes painful. At that point, an additional C-
component of responses can be recorded. As current continues 
to increase, more action potentials occur in the C component. 

B. Linear Time-Invariant Model Fitting 
As mentioned above, a linear time-invariant (LTI) model 

quantifies the input-output relationship between the current 
delivered and the resulting WDR neuron firing rates. In the 
transfer function realization of an LTI model (1), H(s) provides 
the Laplace domain relationship in terms of coefficients a0 
through az and b0 through bp, where z is the number of zeros,  
p the number of poles, and s the Laplace variable. 

 H(s)= 
a0sz+a1sz-1+⋯+az
b0sp+b1sp-1+⋯bp

 (1) 

Specifically, the transfer function (TF) representation was 
utilized in two different scenarios. First, a single LTI TF was 
determined to serve as a reference model with minimal 
complexity. Additionally, a set of LTI TF models were used as 
components to construct the linear parameter varying (LPV) 
model. To generate multiple LTI models, input-output pairs of 
time-series were generated. Then strictly proper TF models 
relating these input-output pairs were generated using 
MATLAB’s built-in subspace methods, enforcing stability. 
Poles could range from 3 to 10, and zeros could range from 2 
to 9, with the condition that there were fewer zeros than poles.  

 C. Linear Parameter Varying Model Fitting 
We propose that a linear parameter varying (LPV) model 

can capture the nonlinearities in the WDR PNS responses as 
opposed to a single LTI model. In the state-space realization 
of LPV models, a scheduling parameter determines the state-
space matrices used to predict the WDR response (Fig. 3).  

To develop the LPV models, the strictly proper LTI TFs 
(described in II.B) were identified for each individual 
stimulation amplitude using their respective responses. This 
generated a set of LTI TF models, one for each stimulation 
amplitude, which were then transformed into state-space 

 
Figure 2. A) Data collection scheme, in which the paw is stimulated 

with electricity of varying amplitude and wide-dynamic range (WDR) 

neuronal firing is recorded. B) Average firing rate responses of a WDR 

neuron for 0.2 to 10 mA of current. 
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representations. Therefore, our final LPV model was created 
by using the set of LTI models and a scheduling parameter, #, 
which determined the state-space model evaluated for that 
instant in time. We chose our scheduling parameter, #, to be 
the integral of current delivered over the last 20 seconds, 
effectively giving us the amplitude of the single pulse as our 
parameter but allowing for history effects due to more 
complex inputs in future work. 

D. Identifying and Selecting the LPV Model Order 
 To evaluate and select a best-fit LPV model, a root-mean-

squared error (RMSE) was calculated between the firing rate 
curve and model-predicted curve for every stimulation 
amplitude and every pole-zero combination. The average 
RMSE was then evaluated over all SR pulses. Further, the 
order of the model (number of poles) was penalized to prevent 
overfitting. By minimizing a weighted combination of the 
RMSE values and model order, we identified a single pole-
zero combination to be used going forward. To evaluate the 
performance of the LPV model, we also identified a single LTI 
model of the same pole-zero combination to act as a reference.  

E. LPV Interpolation Scheme and Evaluation 
For constructing the LPV model, an interpolation scheme 

is needed to estimate the response for any value of the 
scheduling parameter without an associated trained LTI 
model. Common methods include using the nearest neighbor 
(in scheduling parameter space) and linear interpolation. We 
chose a linear interpolation scheme, whereby the A, B, C, and 
D matrices of the state space model are linearly interpolated 
from the two nearest neighbor models. For this work, we 
utilized the interpolation scheme built into MATLAB’s LPV 
Block in Simulink.  

We evaluated this LPV model with a linear interpolation 
scheme by systematically leaving out each of our eight internal 
grid points (0.3-5 mA) and simulating the response using 
interpolation of the two nearest neighbors. For example, to 
find the interpolated model for 3 mA we interpolated between 
the state-space systems for 2 mA and 4 mA. The same inputs 
were simulated using the LTI model generated with equal 
poles and zeros. Two metrics were used to evaluate and 
compare the two model fits relative to the recorded firing rate 
data: R-squared (R2) coefficient of a linear fit and a root-mean-
squared error (RMSE).  

III. RESULTS 

The optimal combination of poles and zeros for the fitted 
LTI models used for the LPV model was found to be 8 and 6, 
respectively. Across the whole time-series of 10 SR pulses, the 
models fit the data well with an R2 coefficient of 0.998 and a 
RMSE of 0.0364. In addition to time-series quantification 
metrics, we can also look at the set of LTI models in the 
frequency-domain. Fig. 4 displays the Bode plots of the 
models, showing a decreased gain with increased amplitude, 
as expected. While the firing rate response increases with 
increased current amplitude, that change is significantly 
smaller than the change in current. Additionally, an altered 
shape can be seen between 2 and 10 Hz for the three greatest 
amplitudes of stimulation; all three of these display a second 
activation peak, indicating pain transmission. The same can be 
seen in the Bode plot of the all-pulse LTI model. 

Fig. 5 shows examples of the LPV and LTI simulated 
responses overlaid with the data. The single LTI model (in 
blue) shows two peaks across every pulse, scaled by the input 
amplitude. Meanwhile, the LPV model (in red) shows just one 
main peak at small amplitudes (< 1 mA), two distinct peaks at 
high amplitudes (> 3 mA), and a transition period between the 
two (1-3 mA), showing that only the LPV model captures the 
nonlinear transition between non-noxious and noxious stimuli. 

 

Figure 3. Linear parameter varying model schematic for the stimulus response curve (varying the input current amplitude). Each model is trained with 

a different input-output pair and stored at the proper point in scheduling parameter space. Any point between two models in scheduling space (thick 

black line) can be interpolated using the two nearest models (red blocks). 

 

Figure 4. Bode plot of the set of 10 individual LTI models fit for the 

10 amplitudes of peripheral nerve stimulation, along with the LTI 

model for all 10 amplitudes together. 
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The high oscillations observed in the 3 mA LPV response (Fig. 
5) is an example of this transition, which does not match the 
data as well as in the non-transition cases. This suggests that 
the linear interpolation scheme works well in cases where it 
was interpolating between similar-shaped responses. At small 
amplitudes, the size of the A fiber response was changing but 
the C fiber response was zero. Meanwhile, the 5 mA response 
was simulated using 4 mA and 10 mA responses, both of 
which showed well-defined A and C fiber responses. 

Finally, the R2 and RMSE values were analyzed for each 
stimulation amplitude and compared between the LTI and the 
LPV simulations. As seen in Fig. 6, the LPV model almost 
always performs better than the LTI model across stimulation 
amplitudes, except at 4-5 mA. The time-domain response of 
the single LTI model has both A and C fiber peaks at every 
input amplitude, making the high amplitude responses fit best. 
However, both the shape of the response and linear decrease 

in amplitude makes the fit much worse at low current 
amplitudes. Therefore, the results in Figs. 5 and 6 highlight the 
strength of the LPV model, which can accurately capture the 
nonlinearities that the single LTI model cannot.  

IV. DISCUSSION 

In this work, we showed that we can successfully represent 
the nonlinear dynamics of the WDR neuronal responses in the 
dorsal horn in response to stimulation using an eighth order 
LPV model. We also showed that we can estimate the 
unsampled space of stimulation amplitude (within 0.2-10 mA) 
of parameter	# with success. In contrast, the LTI model failed 
to capture the variable thresholds for noxious and non-noxious 
stimuli. 

The LPV framework is easily extendable to allow for 
multi-dimensional scheduling parameter space. We hope to 
use this in the future to capture the nonlinear dynamics of 
repetitive stimulation at different frequencies in addition to 
this example of varying stimulation amplitude. Finally, we 
eventually will use these models and extensive scheduling 
parameter space to design peripheral nerve stimulation 
controllers to treat chronic pain.  
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Figure 5. Simulated results for eighth order linear time invariant (LTI) 

and linear parameter varying (LPV) models. LPV results simulated 

using a two-nearest-neighbor linear interpolation scheme. Interpolation 

appears to perform best at small and high amplitudes and less well 

where the system transitions from one to two peaks. 

 

Figure 6. Comparison of simulated results using an eighth order linear 

time invariant (LTI) model and linear parameter varying (LPV) model. 

R-squared value taken from a linear fit with recorded data. Root mean 

squared error similarly calculated relative to recorded data. 
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