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Abstract— Corticomuscular communications are commonly
estimated by Granger causality (GC) or directed coherence,
with the aim of assessing the linear causal relationship between
electroencephalogram (EEG) and electromyogram (EMG) sig-
nals. However, conventional GC based on standard linear
regression (LR) models may be substantially underestimated
in the presence of noise in both EEG and EMG signals: some
healthy subjects with good motor skills show no significant
GC. In this study, errors-in-variables (EIV) models are inves-
tigated for the purpose of estimating underlying linear time-
invariant systems in the context of GC. The performance of the
proposed method is evaluated using both simulated data and
neurophysiological recordings, and compared with conventional
GC. It is demonstrated that the inferred EIV-based causality
offers an advantage over typical LR-based GC when detecting
communication between the cortex and periphery using noisy
EMG and EEG signals.

I. INTRODUCTION

Dynamic interactions between cortex and muscle are
commonly detected and quantified by analysing electroen-
cephalogram (EEG) and electromyogram (EMG) signals
recorded synchronously during motor tasks. The traditional
measure for quantifying linear interdependencies between
EEG and EMG is mainly based on the spectral methodology
of corticomuscular coherence (CMC) analysis [1], [2]. To
further identify the causal relationships, Granger causality
(GC, or directed coherence) [3], [4] is also applied [5].

However, both CMC and GC are often not sufficiently
sensitive: for some healthy subjects with good motor skills,
the values of coherence and GC may even fall below the
significance threshold [5]. This can be attributed to the pres-
ence of high levels of noise and activities irrelevant to studied
processes in EEG and EMG signals, which are not explicitly
accounted for in CMC and GC analysis [6]. The standard
method of computing GC involves estimation of parameters
of conventional linear regression (LR) models, including
autoregressive moving average (ARMA) and autoregressive
(AR) models [7]. The corresponding regression coefficients
are estimated by ordinary least squares (OLS) model fitting
[8]. In this case, LR models assume that the regressors
have been measured exactly [9]. However, given that both
EEG and EMG are noisy signals, the additive input noise
may substantially modify the structure of the series, leading
to underestimated or spurious causality [10]. Therefore, it
is essential to account for measurement errors in both the
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independent and dependent variables [11], so as to have a
better understanding of the causal relationship between the
noise-free cortical events and noise-free muscle events.

Representations where measurement noises are presented
on both independent and dependent variables are known
as errors-in-variables (EIV) models [12]. Although the EIV
approach is most pertinent to describing neurophysiological
recordings, the interaction between EEG and EMG is seldom
studied in this framework. Towards exploring the causal re-
lationship between noisy EEG and EMG data, we propose a
new concept of causality measurement, which combines tra-
ditional GC with estimation of underlying systems in the EIV
framework. In the EIV framework, the model coefficients can
be estimated via total least squares (TLS) approximation. In
contrast to GC with OLS estimator, our EIV-based causality
measurement with TLS estimation models the noise compo-
nents in both input and output signals explicitly [9], [13], and
hence has the potential to be advantageous for discriminating
GC in the context of cortex-muscle interactions (CMI). The
performance of the inferred method is evaluated using both
simulated data and neurophysiological recordings, and is
compared to the traditional GC measurement.

The remainder of this paper is organized as follows:
Section II describes the models and the proposed methods.
Section III presents the experimental results using both
simulated and neurophysiological data. Section IV draws
conclusions.

II. METHODS

A. The Model of CMI System

1) Standard LR model: In the basic LR model, the cortical
signal x(t) effects a muscle response in a linear time-
invariant fashion, which is observed to be degraded by
additive noise εy(t). This is described as a moving average
(MA) model y(t) =

∑m
i=1 ayx,ix(t − i) + εy(t), where

y(t) is the observed muscle signal. Considering the lagged
interactions between EEG and EMG signals [6], the MA
model can be modified to account for an arbitrary interaction
delay u ≥ 0 as y(t+ u) =

∑m
i=1 ayx,ix(t− i) + εy(t+ u).

In a more general case of bidirectional communication, the
underlying ARMA model has the form

x(t+u) =

m∑
i=1

axx,ix(t−i+u)+

m∑
i=1

axy,iy(t−i)+εx(t+u),

(1a)

y(t+u) =

m∑
i=1

ayy,iy(t−i+u)+

m∑
i=1

ayx,ix(t−i)+εy(t+u).

(1b)
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Models (1a) and (1b) are usually solved via OLS model
fitting. To elaborate, considering the model (1b) only, param-
eters ayy,i and ayx,i are estimated using maximum likelihood
estimation (MLE) assuming Gaussian residuals. That gives
rise to the least squares model fitting. Accordingly, the
coefficients ayy,i and ayx,i of the model (1b) are chosen
so as to minimize the square error Ey = (1/(N − m −
u))
∑N−u

t=m+1 |εy(t+u)|2, where the number of observations
of each process is N , and εy(t + u) = y(t + u) −∑m

i=1 ayx,ix(t− i)−
∑m

i=1 ayy,iy(t− i+u). An appropriate
model order m is determined using the model selection
criteria - Bayesian Information Criterion (BIC) [14].

2) EIV model: Compared to conventional LR models,
EIV methods perform estimation of CMI systems by explic-
itly modelling the noise components in both input and output
signals. A typical EIV model of a CMI system is given as

x(t+ u) =

m∑
i=1

axx,i (x(t− i+ u)− εx(t− i+ u)) +

+

m∑
i=1

axy,i (y(t− i)− εy(t− i)) + εx(t+ u),

(2a)

y(t+ u) =

m∑
i=1

ayy,i (y(t− i+ u)− εy(t− i+ u)) +

+

m∑
i=1

ayx,i (x(t− i)− εx(t− i)) + εy(t+ u),

(2b)

which gives rise to TLS model fitting. The classical solution
of TLS is using singular value decomposition (SVD) [15].
Considering the model (2b) only, to simplify the notation,
we first let

A =[ayy,1, ..., ayy,m, ayx,1, ..., ayx,m]T ∈ R2m×1,

Z =[y(m+ u), ...,y(1 + u),

x(m), ...,x(1)] ∈ R(N−m−u)×2m,

∆Z =[−εy(m+ u), ...,−εy(1 + u),

− εx(m), ...,−εx(1)] ∈ R(N−m−u)×2m,

Y =[y(m+ u+ 1)] ∈ R(N−m−u)×1,

∆Y =[εy(m+ u+ 1)] ∈ R(N−m−u)×1,

where we use the notation

y(t) = [y(t), y(t+ 1), ..., y(t+N −m− u− 1)]T,

and analogously for x(t), εy(t), and εx(t). The EIV model
(2b) can be rewritten in the matrix form as

Y = (Z + ∆Z)A+ ∆Y. (3)

Let the augmented data matrix D = [Z, Y ] = UΣV T , where
Σ = diag(σ1, ..., σ2m+1) is a singular value decomposition
of D, σ1 ≥ · · ·σ2m+1 are the singular values of D, and
define the partitioning

V =

[
V11 V12

V21 V22

]
∈ R(2m+1)×(2m+1),

where V22 is a (1×1) matrix. If V22 6= 0 and σ2m 6= σ2m+1,
the unique TLS solution is given as Âtls = −V12V

−1
22 , and

the corresponding TLS correction data matrix is ∆Dtls =
[∆Z,∆Y ] = −U diag (0, σ2m+1)V T.

B. Classic GC Analysis

GC is a standard technique for measuring the causal
dependence between two time series [8]. Considering the
model (1b) alone, the variance of {εy(t + u)}, denoted as
Var[{εy(t+u)}], determines the regression error for y(t+u)
based on the past samples (y(t−m+u), ..., y(t−1+u)) and
(x(t −m), ..., x(t − 1)). GC compares this prediction error
with that obtained by predicting y(t+ u) based only on the
past samples (y(t −m + u), ..., y(t − 1 + u)) according to
the AR model

y(t+ u) =

m∑
i=1

a′yy,iy(t− i+ u) + ε′y(t+ u), (4)

where {ε′y(t+u)} is assumed to be zero-mean with variance
Var[{ε′y(t + u)}]. If the prediction error Var[{ε′y(t + u)}]
for the AR model (4) is larger than the error Var[{εy(t +
u)}] for the ARMA model (1b), then {x(t)} is considered to
cause {y(t)} in terms of GC. Time-domain Granger causal
influence is thus measured by the ratio

GCols,x→y = ln
Var

[
{ε′y(t+ u)}

]
Var [{εy(t+ u)}]

, (5)

where the residual variance Var[{εy(t + u)}] for ARMA
model (1b) is usually estimated as the sample variance as
Var[{εy(t+u)}] = 1

N−m−u−1

∑N−u
t=m+1 |εy(t+u)|2. Similar

for Var
[
{ε′y(t+ u)}

]
for AR model (4).

C. EIV-based Causality Measurement

To account for the causal relationship between two noisy
signals, we then revise the traditional GC concept on the
basis of the EIV model. Consider the standard linear regres-
sion model Y = ZA + ∆Y , where Y , Z, A, and ∆Y are
defined as in model (3). The OLS approximation Âols for A
is obtained by{

Âols,∆Yols

}
= arg min

A,∆Y
‖∆Y ‖2,

subject to Y = ZA+ ∆Y,
(6)

which aims to correct the residual ∆Y as little as possible in
terms of the Euclidean norm. Standard GC thus quantifies the
increase of prediction error (the sample variance or unbiased
mean square of the Euclidean norm of the residual ∆Y ),
when the vectors x(m), ...,x(1) are excluded from Z in the
corresponding AR model Y = Z ′A′ + ∆Y ′. Here,

A′ =
[
a′yy,1, a

′
yy,2, ..., a

′
yy,m

]T ∈ Rm×1,

Z ′ = [y(m+ u), ...,y(1 + u)] ∈ R(N−m−u)×m,

∆Y ′ =[ε′y(m+ u+ 1)] ∈ R(N−m−u)×1,

where

ε′y(t) = [ε′y(t), ε′y(t+ 1), ..., ε′y(t+N −m− u− 1)]T.
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In the context of the EIV model, considering the equation
(3), the TLS approximation Âtls for A is given by{

Âtls,∆Ztls,∆Ytls

}
= arg min

A,∆Z,∆Y
‖[∆Z,∆Y ]‖F,

subject to Y = (Z + ∆Z)A+ ∆Y,
(7)

which looks for the minimal corrections for both ∆Z
and ∆Y in the Frobenius norm sense. This motivates the
use of the unbiased mean square of the Frobenius norm
of [∆Z,∆Y ] to quantify the increase in error in both
the independent and dependent variables, when the vectors
x(m), ...,x(1) and −εx(m), ...,−εx(1) are excluded from
Z and ∆Z, respectively, in the corresponding AR model
Y = (Z ′ + ∆Z ′)A′ + ∆Y ′. Here,

∆Z ′ = [−εy(m+ u), ...,−εy(1 + u)] ∈ R(N−m−u)×m,

The EIV-based causality can thus be defined as

Ctls,x→y = ln

1
(N−m−u)(m+1)−1‖[∆Z

′,∆Y ′]‖2F
1

(N−m−u)(2m+1)−1‖[∆Z,∆Y ]‖2F
. (8)

D. Statistical testing

We used independent Gaussian sequences to identify sig-
nificant values of causality. A total of 1000 pairs of Gaussian
independent signals were produced with the variances equal
to the variances of investigated simulated and neurophysio-
logical signals. Then the above two methods were followed.
For the approximately normal distributed result values, we
use two standard deviations of the mean as the thresholds,
which approximates to a 95% confidence level (CL). Values
larger than these identified thresholds will be regarded as
significant.

III. RESULTS

A. Simulated Data Results

Let us consider a linear system between two time series
{x0(t)} and {y0(t)}, where {y0(t)} depends on {x0(t)}, and
{x0(t)} is independent of {y0(t)}:

x0(t) = 0.95
√

2x0(t− 1)− 0.9025x0(t− 2), (9a)

y0(t) = −0.5y0(t− 3) + 2x0(t− 1) + 1.6x0(t− 2). (9b)

Let us further consider estimating this system and the
underlying causality relationships from noisy observations
x(t) = x0(t)+εx(t) and y(t) = y0(t)+εy(t), where {εx(t)}
and {εy(t)} are Gaussian noise sequences with a mean of 0
and a standard deviation of 0.1. We evaluate the proposed
methodology using a N = 50 samples’ long realization of
{x(t)} and {y(t)}.

The coefficient estimation results of model (9b) are shown
in Table I, where the relative error of estimation is computed
as ‖â− a‖2/‖a‖2, for a = [a1, ..., anp

]T, and np is the
number of parameters. According to the table, the TLS
method gives better parametric estimation. This is due to the
presence of noise in both {x(t)} and {y(t)} such that the
OLS method, in which the independent variables are assumed
to be error-free, gives a worse estimation.

TABLE I
THE COEFFICIENT ESTIMATION OF MODEL (9B), SNRx = 7.39dB.

a1 a2 a3 a4 a5 a6 relative error
a 2 1.6 0 0 0 -0.5 0

âols 1.41 1.25 0.03 0.17 0 -0.53 0.27
âtls 2.08 1.56 0.09 0.01 0.02 -0.48 0.05

The causality results are shown in Table II. The classic
GC detects a significant directed connection from {x(t)} to
{y(t)} (1.15 > 0.19); whist GC from {y(t)} to {x(t)} is
close to the significant level (0.20 ≈ 0.19). In contrast, our
EIV-based method successfully detects significant causality
from {x(t)} to {y(t)} (2.89 > 1.36 and 0.63 < 1.36),
which confirms the inferred EIV-based causality method for
measuring causality in the EIV context.

TABLE II
CAUSALITY BETWEEN {x(t)} AND {y(t)}.

GC EIV-based causality
x to y y to x x to y y to x

Causality 1.15 0.20 2.89 0.63
Significant level 0.19 0.19 1.36 1.36

B. Results on Neurophysiological Data

1) Data Collection: The above method was applied to
neurophysiological recordings collected from four healthy
subjects during a controlled movement task [2]. The subjects
gave informed consent to the study, which was ethically
approved and carried out in accordance with the declaration
of Helsinki. The subjects were asked to sit at a table, and hold
a 15 cm ruler with the thumb and index finger of the right
hand, grasping the end 2 cm of the ruler, and keeping the
ruler 2 cm above and parallel to the tabletop. The disturbance
was provided by an electromechanical tapper. The length
of each trial was 5 s, and the stimulus was given 1.1 s
after the start of the trial. The entire experiment consisted
of up to 8 blocks of 25 trials each. Thus, approximately
200 trials of data were collected from each subject. EEG
was recorded from the scalp overlying the contralateral hand
area of the motor cortex. EMG was recorded over the first
dorsal interosseous (FDI) muscle of the dominant hand. The
sampling frequency was 1024 Hz. Raw data were reviewed
offline by visual inspection, and epochs of data with blink
artefacts or movement were rejected [2].

2) GC results: In this study, all GC analysis was per-
formed within 500 ms (512 samples) segments every 250 ms
(256 samples). The model order m is determined by BIC
[14] which gave m = 30. In addition to the model order,
in neuroscience, interaction delays u can amount to several
tens of milliseconds. For the EEG-EMG coupling analysis,
the interaction delay is estimated to be between 20 and 35
milliseconds (ms) [6]. In this study, u is set to correspond
to the number of samples in 25 ms for both directions.

The result of GC analysis is shown in Figure 1. According
to Figure 1, Subjects A and B present significant bidirectional
GC almost throughout the experiments, especially in the
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direction of EEG→EMG. In contrast, for subjects C and
D, the value of GC fluctuates around the 95% CL, which
exhibits an inconsistent result across subjects.

Fig. 1. GC in subjects A-D, showing changes in GC over time. The
stimulus is set at t = 0.

3) EIV-based causality results: Similar to GC analysis,
the inferred EIV-based causality analysis was performed
using the same parameters. Figure 2(a) shows the EIV-based
causality results: TLS-causality reveals communication in
the direction from EEG to EMG with a consistent pattern
across subjects A-D; while it is not significant in the opposite
direction. The observations suggest that, in the context of an
EIV model, linear causality is more prominent for commu-
nication from EEG to EMG. In a study of cross-frequency
coupling using a modified CMC method, Yang et al. also
found evidence for predominantly linear coupling in the
cortex-muscle direction, whereas there are more non-linear
dynamics in sensory feedback pathways [16]. Our findings
with TLS-causality are thus concordant with this.

To further show changes in EIV-based causality over time,
Figure 2(b) presents the zoomed-in EIV-based causality in
the direction of EEG→EMG. A fluctuation in the level of
causality in relation to the stimulus is observed, and all the
subjects show high causality during the post-stimulus period.

IV. CONCLUSIONS

In this study, EIV models are introduced to account for
measurement noise in both the input and output signals of
a CMI system. We propose a novel causality measurement
based on the EIV models, along with the TLS solution. Using
simulated data, we demonstrate that the EIV-based causality
method would successfully detect the causal relationship
between two time series in an EIV problem. Evaluations
using neurophysiological data indicate that the method is
potentially advantageous for detecting GC relationships in
the context of CMI.
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