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Abstract— Monitoring post-operative patients is important
for preventing severe adverse events (SAE), which increases
morbidity and mortality. Conventional bedside monitoring
system has demonstrated the difficulty in long term monitoring
of those patients because majority of them are ambulatory.
With development of wearable system and advanced data
analytics, those patients would benefit greatly from continuous
and predictive monitoring. In this study, we aim to predict
SAE based on monitoring of vital signs. Heart rate, respi-
ration rate, and blood oxygen saturation were continuously
acquired by wearable devices and blood pressure was measured
intermittently from 453 post-operative patients. SAEs from
various complications were extracted from patients’ database.
The trends of vital signs were first extracted with moving
average. Then four descriptive statistics were calculated from
trend of each modality as features. Finally, a machine learning
approach based on support vector machine was employed
for prediction of SAE. It has shown the averaged accuracy
of 89%, sensitivity of 80%, specificity of 93% and the area
under receiver operating characteristic curve (AUROC) of 93%.
These findings are promising and demonstrate the feasibility of
predicting SAE from vital signs acquired with wearable devices
and measured intermittently.

I. INTRODUCTION
Major abdominal surgery is associated with risk of severe

adverse events (SAE) [1], which might lead to preventable
and avoidable deaths in the hospital. It has been reported
that clinical deterioration was preceded with SAEs and
often reflected by the abnormal changes of vital signs [2].
Therefore, monitoring of vital signs and timely prediction of
deterioration from those monitoring would make difference
in morbidity and mortality for post-operative patients.

Monitoring of vital signs is a standard procedure for the
hospitalized patients. It is often performed intermittently by
bedside monitoring system, which show some difficulties
for monitoring of mobilized patients. Mobilization after
the surgery has proven to be a vital step in recovery and
rehabilitation [3]. This calls for the use of wearable mon-
itoring system. Currently, the early warning scores (EWS),
which is an aggregate weighted scoring system based on
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values of vital signs, is the most commonly used scoring
system to assist in evaluating patients’ risk of complications
and provide corresponding treatments. Despite being widely
used, EWS has some limitations due to its simple model.
Time-based correlation among vital signs is not the focus
of EWS. It only represents present status and provides
no information about future possible development of vital
signs. In addition, EWS is often calculated on intermittent
observations of vital signs, which might be inadequate.
Patients may deteriorate significantly between observations.
With technical development in electronic miniaturization,
wearable technology, wireless communication, computing
power and data analytics, continuous monitoring of vital
signs combined with advanced data analysis would overcome
the limitations and challenges faced by current monitoring
system for hospitalized patients. The researches have shown
that random forest performed better than EWS for prediction
of clinical deterioration [4], [5]. Machine learning based
approaches for predictive monitoring have been adopted
greatly. The performance varied substantially based on var-
ious clinical settings, machine learning method used and
different observation and prediction windows, see [6] for a
review.

A lot of research has been devoted to predicting ICU read-
mission and mortality by using bedside monitoring system
or medical records [7], [8]. Some studies have focused on
predicting one type of SAEs such as sepsis onset [9] and
cardiac arrest [10]. Other study tried to predict the SAEs
resulting from cardiac arrest, intensive care unit transfer and
death [4]. Research by Clifton et al. [11] tried to detect
abnormality by statistical model trained from normal states
of patients. In this paper, we extracted SAEs resulting from
neurologic, respiratory, circulatory, infectious and other com-
plications from patients’ database. The patients’ vital signs
were monitored. The objective was to prove the feasibility of
prediction of SAE based on continuous monitoring of heart
rate (HR), respiration rate (RR), and blood oxygen saturation
(SpO2) by wearable devices and intermittent measurement of
blood pressure (BP). To the best of our knowledge, this is
the first study to predict SAEs representing various severe
complications.

II. MATERIALS AND METHODS
A. Patients

The study took place at Rigshospitalet and Bispebjerg
Hospital in Copenhagen, Denmark from February 2018 to
August 2020. It is a sub-project of Wireless Assessment
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of Respiratory and circulatory Distress’ (WARD) project.
The study and experimental procedures on patients were
approved by the Danish Data Protection Agency (2012-
58-0004) and registered at http://ClinicalTrials.gov (project:
NCT03491137). 500 post-operative patients participated the
study. 8 patients were excluded because they were not part
of the study and 39 were excluded due to having less than
10 hours vital sign recording (10 hours data were used
for observation window, see detail in section C). Finally,
453 post-operative patients (278 males, 175 females) were
included for further analysis. Mean of age was 71 years
old (range: 60–93). Mean of monitoring hours was 79
hours (range: 0.73-168.8). Patients in the study had a wide
range of clinical SAEs ranging from neurologic, respiratory,
circulatory, infectious and other complications. Information
about SAEs were registered by medical doctors. Patient data
containing all clinically relevant information were organized
and stored in a local database. All patients gave their written
informed consent for the study.

B. Clinical vital signs monitoring

The vital signs HR, RR and SpO2 were acquired con-
tinuously by the wearable sensors and BP was measured
intermittently. The acquisition of vital signs was managed
by Isansys patient status engine (PSE) (Isansys Lifecare
Ltd). The Isansys Lifetouch was attached to patients’ chest
for acquiring single lead ECG with sampling frequency of
1000Hz, from which HR in beats per minute and RR in
breaths per minute were derived. Pulse Oximeter (Nonin
Model 3150 WristOx2) was attached to the finger for the
acquisition of the photoplethysmogram (PPG) with sampling
frequency of 75 Hz, from which SpO2 as a percentage was
derived. The wearable sensors’ data and derived values were
first transmitted via Bluetooth to gateway of PSE, which
was located near the bed of the patient, and then to a
hospital server for storing data in patients’ database via WiFi
every minute. Systolic blood pressure (sysBP) in mmHg
was measured intermittently by using Meditech BlueBP-05.
These sysBP measurements were entered into gateway by
medical staff and then automatically transmitted to patients’
database. HR, RR, SpO2 and sysBP were synchronized
through their timestamps.

C. Severe adverse event prediction

In essence, predicting SAE is a classification problem.
It aims to classify SAE versus no SAE in a few hours
(prediction window) based on last recordings (observation
window). In this study, prediction window was chosen to
be two hours and observation window was chosen to be ten
hours as shown in Fig. 2(a). The prediction of SAE was based
on the features extracted from trends of four time series HR,
RR, SpO2 and sysBP and on classification carried out with
support vector machine (SVM). Fig. 1 depicts the steps of
the procedure.

1) Extraction of SAE class and control class: SAE class
was identified based on SAEs’ timestamps. To account for
class imbalance, SAE class was oversampled. SAE class

Fig. 1. Overview of SAE prediction

samples were extracted as eight hours’ time series of vital
signs with overlapping from two hours before to twelve
hours before SAE timestamp. Four samples were extracted
for each SAE as illustrated in Fig. 2(a). Control class
samples were extracted from patients who did not have SAEs
during vital sign monitoring at hospital and the monitoring
duration was at least eight hours. Fig. 2(b) illustrates the
extraction of control samples. The samples were extracted
during the whole monitoring period to cover all possible
patients’ statues.

2) Feature extraction: Extracting discriminative features
is important for the prediction of SAE. The clinical dete-
rioration is often preceded with SAE and is reflected in
vital signs. In this study, first the trends of HR, RR, SpO2
and sysBP were extracted by using moving average with
sliding window of 60 minutes. The trends were supposed to
represent the deterioration. Then four descriptive statistics
(maximum, minimum, mean, and standard deviation) were
calculated from the trend of each modality as features. The
features from each modality were concatenated into one
feature vector. The length of the feature vector was sixteen.

3) Classification based on support vector machine: The
SVM is a supervised machine learning algorithm for solving

Fig. 2. (a) Illustration of extraction of SAE samples (0 represent SAE
timestamp, h: hour) (b) Illustration of extraction of control samples
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classification and regression problems. It has shown good
generalization property in many applications [12], [13]. The
basic idea is to construct an optimal hyperplane for linearly
separable patterns. The optimal hyperplane is the one that has
maximal margin between two classes. For the non-linearly
separable patterns, which most real world problems involve,
one solution is to transform original data into a higher
or indefinite dimensional space and then find a separating
hyperplane in the transformed space by using kernel function.
Given a training set (xi, yi), i = 1, . . . , N where xi ∈ Rn
and yi = {±1}, xi is a data point and yi indicates the class
which the point xi belongs to. The output of the classifier is
defined as

y(xi) = sign
[
wTϕ(xi) + b

]
(1)

where the function ϕ maps xi into a higher dimensional
space. w is the weight vector and b is the bias of the
hyperplane. The standard SVM requires the solution of the
following optimization problem [14]:

min
w,b,ξ

1

2
wTw + c

N∑
i=1

ξi (2)

subject to{
yi
(
wTϕ (xi) + b

)
≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N
(3)

where ξi is a slack variable and c is a penalty parameter.
They are used when the training samples cannot be separated
without error. Under the circumstances, training samples can
be on the wrong side of the hyperplane with a small distance
ξi. In practice, there is a trade-off between a low training
error and a large margin. This trade-off is controlled by the
penalty parameter c. A Gaussian kernel k was chosen for
non-linear SVM classifier in this study:

k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
= ϕ(xi)

Tϕ(xj) (4)

where σ is the width of Gaussian kernel. Tuning of σ is
important for optimizing classifier performance.

The classification performance was estimated with 3-
fold cross-validation procedure. The misclassification cost
(n SAE+n control)/n SAE was given to SAE data sam-
ples, whereas (n SAE + n control)/n control to control
data samples. Here, n SAE and n control represent the
number of data samples belonging to SAE class and control
class, respectively. The dataset was randomly partitioned
into three subsets. One subset (a testing set) was used to
validate the classifier trained on the remaining two subsets
(a training set). This process repeated until each subset was
validated once. During training, the training set was further
divided into subsets for optimizing Gaussian kernel parame-
ter σ and boxconstraints (inner cross-validation). The set of
boxconstraints and σ were searched among positive values,
with a log-scaled in the range [10−3, 103]. The optimal
boxconstraints and σ were then applied to build classifier for
the testing set. The performance of classifier was evaluated
in terms of sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV) and the area under
receiver operating characteristic curve (AUROC).

III. RESULTS

The performance of the classifier with 3-fold cross valida-
tion was summarized in the Table I. The accuracy, sensitivity,
specificity, PPV, NPV and AUROC are relatively close
among three tests. The classifier achieved an averaged accu-
racy of 89%, sensitivity of 80%, specificity of 93%, PPV of
82%, NPV of 92% and AUROC of 93%. Additionally, Fig. 3
presented the receiver operating characteristic curves (ROCs)
for three tests. The averaged AUROC of 93% indicated the
good discriminative power of the classifier.

TABLE I
THE PERFORMANCE OF CLASSIFIER FROM 3-FOLD CROSS VALIDATION

(ACC.: ACCURACY; SEN.: SENSITIVITY; SPE.: SPECIFICITY)

ACC. SEN. SPE. PPV NPV AUROC
Test 1 88.91% 80.00% 92.41% 80.56% 92.16% 92.47%
Test 2 89.28% 82.75% 91.85% 80.00% 93.11% 91.96%
Test 3 90.25% 78.62% 94.84% 85.71% 91.84% 94.12%
Average 89.48% 80.46% 93.03% 82.08% 92.37% 92.86%

Fig. 3. ROCs from 3-fold cross validation

IV. DISCUSSION

Currently monitoring of post-operative patients relies on
intermittent bedside monitor and simple model of EWS in the
hospital. Wearable system would facilitate continuous and
predictive monitoring and therefore improve the management
of patients. The objective of this study is to develop an
approach for early prediction of SAEs based on both con-
tinuous and intermittent vital signs monitoring and advanced
machine learning techniques.

In this study, HR, RR and SpO2 were acquired contin-
uously with wearable devices. Because reliably continuous
measurement of BP was not found during the period of
patients’ data collection for the study, it was then measured
intermittently by the available device. With those acquired
vital signs, we have successfully developed an algorithm
based on SVM, which could predict SAE in two hours based
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on last ten hours’ recording with AUROC of 93% shown in
the Table I and Fig. 3.

For machine learning based approach, the features for
training a model are important and should be representative
for the difference between classes. In order to reduce the
effects of random and transient noises, the trends were
first extracted from raw recordings of vital signs by using
moving averaging with sliding 60 minutes window. Then
the maximum, the minimum, the mean and the standard
deviation were calculated from the trends as features. Those
descriptive statistics are simple to be calculated and under-
stood and has been used by previous research [15]. 3-fold
cross validation was adopted to evaluate the performance of
the classifier. The three tests had quite similar result among
accuracy, sensitivity, specificity, PPV, NPV and AUROC,
which reflected that the developed approach for predication is
quite robust. Those six measures indicated that the approach
had a powerful discrimination.

Various machine learning based prediction of clinical
deterioration has been reported in the literature [9], [11],
[16], [17], [18]. The research by Clifton et al [11] applied
novelty detection approach for detection of abnormality. The
clinicians first identified patients being sufficiently abnormal
manually, then using the rest normal patients’ data, being
larger compared to patients being abnormal, to train a
classifier to detect abnormality. They achieved an accuracy
of 94%, sensitivity of 96% and specificity of 93%. By
calculating variability of vital signs as features, the study
using SVM predicted onset of sepsis within the next 4
hours based on recordings from the last 8 hours with an
AUROC of 88% [9]. Chen and Qi reported prediction
performance of heart failure with AUROC of 84% [16]. In
our study, we directly extracted samples of SAEs resulting
from neurologic, respiratory, circulatory, infectious and other
complications from patients’ database. Those SAEs’ samples
were regarded as SAE class. At the same time, the control
class’ samples were extracted from patients who did not have
SAEs during monitoring period. A classifier for prediction of
SAE was trained from those two classes. We have achieved
an AUROC of 93% for predicting SAE in 2 hours based on
last 10 hours’ observation. As main contribution, the paper
proves that SAEs resulting from various complications can
be predicted by HR, RR and SpO2 acquired by wearable
devices and BP by intermittent measurement. Using descrip-
tive statistics extracted from trends as features and SVM
based machine learning technique will reduce computational
complexity and therefore require less resources, which is
crucial for its implementation in wearable systems. In the
future, cuffless-based and continuous measurement of BP
will be investigated. The developed approach will be adapted
and integrated for clinical validation.

V. CONCLUSIONS

We have developed a machine learning based approach
to predict SAEs for post-operative patients. The study has
shown that SAEs can be predicated with high AUROC of
93% by four common vital signs, three of which from

wearable sensors and one from intermittent measurement.
The promising results present an important step towards con-
tinuous and predictive monitoring for post-operative patients.
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