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Abstract— Longitudinal fetal health monitoring is essential
for high-risk pregnancies. Heart rate and heart rate variability
are prime indicators of fetal health. In this work, we imple-
mented two neural network architectures for heartbeat detec-
tion on a set of fetal phonocardiogram signals captured using
fetal Doppler and a digital stethoscope. We test the efficacy
of these networks using the raw signals and the hand-crafted
energy from the signal. The results show a Convolutional Neural
Network is the most efficient at identifying the S1 waveforms
in a heartbeat, and its performance is improved when using the
energy of the Doppler signals. We further discuss issues, such
as low Signal-to-Noise Ratios (SNR), present in the training of
a model based on the stethoscope signals. Finally, we show that
we can improve the SNR, and subsequently the performance of
the stethoscope, by matching the energy from the stethoscope
to that of the Doppler signal.

I. INTRODUCTION

Antepartum fetal monitoring is an important part of posi-
tive postpartum outcomes, especially for at-risk pregnancies.
Fetal mortality in the United States among pregnancies
reaching 20 weeks gestational age occur at a rate of ap-
proximately 6 per 1000 live births [1]. Fetal wellbeing
and neurodevelopmental progress can be determined through
monitoring variation in fetal heart rate due to autonomic
nervous system response [2]–[8]. An at-home sensor, capable
of clearly identifying audible cardiac biosignals, e.g., S1
peaks of the phonocardiogram (PCG), and calculating fetal
heart rate variability (FHRV) without the need for a specialist
to place the sensor, would be able to warn of problems more
rapidly, reducing the time between diagnosis and intervention
by enabling detection of adverse events at home. This is espe-
cially important when looking for infrequent adverse events
that may not occur during weekly clinic visits. Improved
intervention time and quicker access to emergency obstetric
care directly correlates to reduced stillbirths and neonatal
deaths, which could be achieved through the adoption of an
easy-to-use, at-home device [9], [10]. Maternal hypoxia can
lead to low birth weight, preterm delivery, small size for
gestational age, neurodevelopmental delay, fetal acidemia,
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and perinatal mortality [11], [12]. Causes of maternal hy-
poxia include lung diseases, anemia, heart disease, and sleep
apnea, although snoring alone is not an indicator without
other comorbidities [13]. Heart disease is on the rise world-
wide, and is present in approximately half of American
adults [14]. Current methods for monitoring fetal impact
from maternal hypoxia are limited to infrequent clinical
visits for fetal Doppler FHRV measurement, fetal cardiac
decelerations compared with intrauterine contractions found
via cardiotocography (CTG) antepartum or intrapartum, and
other perinatal observations such as cord blood pH and
neurodevelopmental progress. These methods provide little
recourse for corrective action due to: (1) discovery after an
insult has occurred, or (2) incomplete actionable information
from lack of longitudinal data.

Most of the current automatic analysis of localization and
classification of heartbeats in PCG signals focus on adult
PCG signals. D. Gill et al. [15] proposed a work using homo-
morphic filtering to extract a smooth envelop, which yields
robust heartbeat detection. Then, they built a Hidden Markov
Model (HMM) to analyze the features of the detected events
in order to enable unsupervised learning. A Hidden Semi-
Markov Model (HSMM), extended with logistic regression,
was proposed by D. B. Springer et al. [16]. This method
used the heartbeat detections from electrocardiogram (ECG)
signals and achieved around 95.63 % F1 score. Zhang et al.
[17] proposed an approach that used Partial Least Squares
Regression (PLSR) to extract the most relevant features
from scaled spectrograms, and performed classification using
Support Vector Machines (SVMs). The detection of heartbeat
from fetal PCG signals is more challenging due to higher
frequency components and lower signal to noise ratio. M.
Samieinasab and R. Sameni [18] proposed a method called
Single Channel Blind Source Separation (SCBSS) consisting
of Empirical Mode Decomposition (EMD) and Non-negative
Matrix Factorization (NMF) to extract clean fPCG signals.
They also made their dataset public for other researchers.
Based on this dataset, S. Tomassini et al. [19] proposed a
filter based on Wavelet transform (WT) features to clean
fPCG signals.

In this paper, we compare various scenarios for heartbeat
detection from fetal PCG (fPCG) signals collected by our
group using fetal Doppler method and digital stethoscope.
We compare the detection of S1 waveforms vs. S1-S2
waveforms for various models and inputs (including raw
signals and hand-crafted energy of the signal). We discuss
the issues associated with the processing of stethoscope data,
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and propose extensions of our work aiming to reconstruct
a signal with similar SNR as the Doppler signals from the
stethoscope waveforms. The rest of the article is organized as
follows: Section II describes our data collection efforts and
data splits used for training, validation and testing; Section III
presents our methodology; Section IV discusses our results,
and Section V summarizes our findings and describes our
plans for future work.

II. DATA COLLECTION

A study was conducted under UNC IRB Protocol #19-
1965 to provide an annotated dataset of fetal heart sounds.
Abdominal acoustic recordings of 20 pregnant women were
taken using a digital stethoscope (Thinklabs One, CO, USA)
while the subjects were in clinic for a standard fetal Doppler
non-stress test. The stethoscope acquired the raw acoustic
data in the frequency range of 11 to 1000 Hz with no
predefined filters applied. The audio signal generated by
the fetal Doppler was recorded in tandem with the signal
from the stethoscope as two simultaneous input channels
of a multitrack audio recorder (H5, Zoom, NY, USA). One
thousand seconds of audio was recorded for each partic-
ipant. Participants also self-reported age, gestational age,
pre-pregnancy height and weight, and the presence of fetal
structural cardiac defects. Only singleton pregnancies were
accepted, and participants with known fetal cardiac murmurs
were excluded. Participants were aged from 18 to 40 years
old (27.3±6.4), with a gestational age from 29 to 39 weeks
(35.7±2.3), and a body mass index from 18.8 to 50.9 BMI
(36.5±8.0). Segments of 30 seconds within the abdominal
recordings from 5 participants were annotated by a practicing
board-certified obstetrician for S1 and S2 heart sounds, and
systolic and diastolic silence were determined from these
annotations. An additional 2 recordings were annotated by
a graduate assistant under guidance. Fig. 1 illustrate some
examples.

We have two configurations for training, validation and
testing. The first training set is referred to as Entire-Session
(ES) Leave-Out. Five of the annotated fPCG files are used
for training and validation, and 2 are set aside for testing.
Of the training files, 4 were annotated by the obstetrician
and the last was annotated by the graduate assistant. Of the
testing files, one was annotated by an obstetrician and one
was annotated by the graduate assistant. The training data
was further split into training and validation, the last 10%
of samples of each file is used as the validation set with
the remainder as the training set. The second configuration
is referred to as Fraction-of-Session (FS) Leave-Out. The
last 30% of samples from each file is used for testing. The
remainder is split 90% for training and 10% for validation.

III. METHODOLOGY

As described earlier, our objective is the accurate extrac-
tion of heartbeats and heart rate from the PCG recordings.
We setup this problem as that of binary detection of heart-
beats and consider as target detection region either the S1
annotations, or the convex hull of the corresponding S1 and

Fig. 1: Illustration of the Doppler and stethoscope audio
signal after wavelet denoising and energy calculation. The
ground truth labels indicating the S1 and S2 waveforms for
each heartbeats are also shown. Note that denoising has a
minimal effect on the stethoscope signals.

S2 windows. This is done to determine for which target
region we get more reliable measurements. We proceed by
defining the metrics, preprocessing, and models used in this
section, and analyze the results for the different variants of
the problem and the methodologies in Section IV.

A. Metrics

In order to evaluate the performance of our heartbeat
detector, we used three metrics: Precision (Prec), Recall
(Rec) and the Mean Absolute Error (MAE) for the heart rate
estimation. The first two metrics were computed using the
number of true positives (TP), the number of true negatives
(TN), the number of false positives (FP) and the number of
false negatives (FN) predicted as follows:

Prec =
TP

TP + FP
,

Rec =
TP

TP + FN
.

In order to obtain a heart rate for the MAE computation,
we need a set of locations of the heartbeats and a window size
(e.g., 4 seconds). The locations of the heartbeats are obtained
by taking the middle point in a continuous segment of
heartbeat detection. We take all the heartbeat locations within
a window and compute the distance between consecutive
heartbeats. We remove outliers using upper and lower bounds
based on the training data. We used 90% of the minimum
distance observed in the training data and 110% of the
maximum distance observed. Finally, we consider the median
of the remaining values as an estimate of heart rate over the
window. The ground truth heart rate is obtained in a similar
manner without outlier removal.
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Fig. 2: Illustration of heartbeat filtering and heart rate com-
putation. [Top] Filtering results by applying a median filter
with a filter size τ = 100 ms including estimated heart rate.
[Bottom] The MAE for heart rate from the training data as
a function of the filter size τ . A value around τ = 100 ms
seems to be optimal in this case yielding a training error
under 3 beats per minute.

We use the median value over a window to report the
estimate of heart rate since instantaneous heart rate values
are more difficult to analyze. Specifically, missed detections
of heartbeats can cause missing values in our data. The
window size is empirically selected to be 4 seconds since
this is the smallest window for which we observed that
the outlier removal process does not return empty sets for
the training data. Having windows larger than four seconds
makes the estimate of the heart rate more robust but yields
aggregated values over larger windows, which do not capture
instantaneous heart rate very well.

B. Preprocessing

The Doppler audio was passed through a finite impulse
response (FIR) antialiasing filter, then downsampled from
48 kHz to 1 kHz. The raw audio was then denoised using
a standard wavelet filter implemented in MATLAB using
sym4 wavelets and level blog2Nc where N is the number
of samples in the recording. The filtered audio was used for
training and testing. We also investigate the use of the energy
of the signals instead of raw signal as an input. The energy
of the filtered audio over time was calculated using moving
variance with a fixed window size of 125 ms. An illustration

S1 S1-S2
Input Appr. (τ ) Prec Rec MAE Prec Rec MAE

R LSTM (70) 0.75 0.69 8.75 0.77 0.76 2.86
R CNN (35) 0.87 0.75 2.19 0.87 0.85 3.11
E LSTM (1) N/A N/A N/A 0.80 0.80 14.92
E CNN (70) 0.87 0.85 1.69 0.87 0.85 2.86

TABLE I: Performance for Fraction-of-Session (FS) Leave-
out using Raw Signal (R) and its Energy (E). Top per-
formances are colored blue. N/A values indicate that the
methodology only converged to a trivial solution predicting
a constant value.

of the energy output is provided in Fig. 1.

C. Model Specification

Long Short-Term Memory (LSTM) Model. This model
consists of: (1) an LSTM layer with 128 hidden units to cap-
ture the temporal information from the provided sequences,
(2) a fully connected layer with ReLu activations and a
0.9 dropout rate, and (3) a final fully connected layer with
softmax activations to perform the classification.

Convolutional Neural Network (CNN) Model. A simple
1D CNN model was implemented in this study. This model
has two 1D convolutional layers with 64 filters and a kernel
size of 3. A max-pooling layer is added to reduce the features
learned by convolutional layers to 1/4 their size, and these
features are flatten to a vector by a flatten layer. Since the
CNN model learns features quickly, a dropout layer with
0.9 dropout rate is used to slow down the learning process
and avoid overfitting. After the dropout process, the features
are put into a fully connected layer with ReLu activation
followed by another fully connected layer with Softmax
activation to return the final prediction.

Post-Processing. The detections from the model may include
some sporadic switches between different labels (e.g., see
Fig. 2 [Top]). In order to enhance the detections, we apply
a median filter. We select an optimal filter size τ based on
the MAE of the estimated heart rate on the training data by
first removing some outliers as discussed in Section III-A.

IV. RESULTS AND DISCUSSION

A. Detection Performance on Doppler Data

For our analysis, we compare a number of scenarios by:
(1) considering the use of S1 or the convex-hull of S1 and S2
as our target regions, (2) comparing LSTM and CNN models,
(3) considering either the raw signal or the energy of the

S1 S1-S2
Input Appr. (τ ) Prec Rec MAE Prec Rec MAE

R LSTM (100) 0.90 0.69 9.13 0.85 0.83 1.12
R CNN (200) 0.92 0.78 1.67 0.83 0.86 1.11
E LSTM (100) 0.88 0.90 1.40 0.88 0.90 1.40
E CNN (200) 0.87 0.93 0.76 0.83 0.94 0.83

TABLE II: Performance for Entire-Session (ES) Leave-out
using Raw Signal (R) and its Energy (E). Top performances
are colored blue.
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Fig. 3: Illustration of reconstructed stethoscope signal by matching the energy between stethoscope and Doppler using a
CNN Network. [Left] The energy of the original and reconstructed stethoscope signals are compared to the energy of the
Doppler. [Right] A snippet of the signals and corresponding spectrograms. We note that the dominant frequency component
in the original stethoscope signal is different from the Doppler. The CNN corrects this content in the reconstructed signal.

signal as an input, and (4) considering a Fraction-of-Session
(FS) or Entire-Sessions (ES) leave-out evaluation strategies.
Tables I and II show the results. Overall, we identified the
best performances to be obtained when using the energy of
the signal as an input combined with a CNN model. Given
our relatively small dataset and clean Doppler signals, it
is logical that the energy is a reliable hand-crafted feature
for heartbeats detection. The CNN architecture also takes
advantage of temporal features in a more explicit form, so
their higher performance also is expected. Given that we
are provided more data for training, we hypothesize that
the raw signal models would match (and possibly surpass)
the energy-based approaches. We also observed that the
detection of S1 on its own yields more accurate results. This
is also expected since, upon visual inspection, the waveforms
seem to be readily identifiable adding the S2 portion to the
target region may just increase variability in the annotations
because the S2 waveforms are harder to detect.

The problem of detecting heartbeats on entire new ses-
sions, i.e., the ES Leave-out approach, should be more diffi-
cult than using fractions of the session for testing. However,
this is not what was observed in Tables I and II. Upon closer
inspection, one session had low signal quality which made
it harder to predict. When using the FS Leave-out approach,
we have a portion of this session included for testing; hence,
the result is relatively higher error. However, for the ES
Leave-out approach, this problematic session was used for
training and consequently overall performance during testing
improved.

B. Performance on Stethoscope Data

Unfortunately, when applying the various models to the
stethoscope data, the models converged to trivial solutions
predicting only a constant value (i.e., all zeros or ones). The
quality of the stethoscope data was lower with significant
background noise and lower frequency content. A possible
cause of this problem is misalignment in the data. As

observed in Fig. 1, the peaks in energy seem to align better
with the S2 waveforms. These delays could be caused by
the processing and buffering of the signals on the different
systems, and it is not clear if these delays would remain
constant across sessions. Furthermore, as it is also observed
in Fig. 1, the standard filtering approaches did not appear
to have meaningful impact on the stethoscope signals. We
plan to explore these misalignment issues as well data-driven
methodologies for filtering the signals in the future.

C. Extensions to Stethoscope Signal Reconstruction

As previously mentioned, data artifacts, such as back-
ground noise, pose a challenge to training a model for
stethoscope signals. Hence, training a detector using the
stethoscope signals requires more training data in order
to capture all signal variability. Depending on the type of
environmental sounds, this may translate into hundreds of
hours of expert annotation. However, if we are able to record
Doppler and stethoscope signals synchronously then we may
use the Doppler signals information to train a classifier for
the stethoscope. For example, we could train a detector for
the Doppler and use the detection output on unlabelled data
as input for training a model for the stethoscope. However,
doing this. i) would require a reliable heartbeat detector
for Doppler data and any changes to the detector would
require recreation of all labels and ii) would not produce
any interpretable results from the stethoscope (i.e., only
detections would be produced that could not be verified in
any way).

Instead, we propose reconstructing the stethoscope signal
so it has some of the characteristics of the Doppler signal.
Making audio signals match can be challenging due to the
phase information of the signal. Hence, we propose focusing
primarily on different content (e.g., the energy of the signal).
We achieve that by defining a CNN that transforms the
original stethoscope signal while trying to match their energy.
The CNN consists of two 1D convolutional layers and each
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one is followed by a max-pooling layer. A dense layer is the
last layer before the output. The loss function is constructed
by the mean square error between Doppler energy and the
reconstructed stethoscope energy. Fig. 3 illustrates the energy
signals of the stethoscope before and after reconstruction,
and how this gives us waveforms that are closer in shape to
the Doppler signals and possess similar frequency content.
We realize that an alternative to matching the energy is
to directly reconstruct the magnitude of the spectrogram,
which is something that we will explore in our future work.
The advantage of this approach is that we can train this
reconstruction network without having to rely on any labels,
and it provides a reconstructed signal that is interpretable
(i.e., it has similar frequency information as the Doppler and
hence it can be played back to verify the locations of the
heartbeats).

V. CONCLUSION AND FUTURE WORK

This paper establishes preliminary work towards improv-
ing antenatal care through the use of Doppler and stethoscope
devices that do not require expert placement for monitor-
ing fetal cardiovascular health. We establish a baseline for
Doppler audio-based heartbeat detection using the raw signal
and the energy of the signal. In these cases, the energy of
the signal yields the best results, detecting the heart rate
with MAE as low to 0.76 beats per minute. Furthermore, we
find that data collected from a single stethoscope recording
device yields inconsistent and trivial solutions for the models
considered. This is possibly due to the delays associated with
sensor placement, the physics of sound traveling through the
human body, and the delays introduced by the hardware used.
Observing these issues in stethoscope data is expected given
that the goal is to allow people to be able to monitor their
child’s health without requiring in-person expert supervision.
Having established that baseline, we used CNNs to filter and
reconstruct stethoscope data while also matching its energy
to its Doppler energy counterpart, enhancing features useful
for detection. In future work, we will expand on this effort
to develop a stethoscope-based heartbeat detection pipeline;
hence, extending crucial obstetric care outside of the clinic.
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