
 

 

 

  

Abstract— Early identification of motion disparities in 

Anterior Cruciate Ligament reconstructed (ACL-R) athletes 

may better post-operative decision making when returning 

athletes to sport. Existing return to play assessments consist of 

assessments of muscle strength, functional tasks, patient-

reported outcomes, and 3D coordinate tracking. However, these 

methods primarily depend on the medical provider's intuition to 

release them to participate in an unrestricted activity after ACL-

R that may cause reinjury or long-term impacts. This study 

proposes a wearable sensor-based system that helps track athlete 

rehabilitation progress and return to sport decision making. For 

this, we capture gait data from 89 ACL-R athletes during their 

walking and jogging trials. The raw gyroscope data collected 

from this system is used to extract causal features based on 

Nolte's phase slope index. Features extracted from this study are 

used to develop computational models that classify ACL-R 

athletes based on their reconstructed knee during two visits (3-6 

months & 9 months) post ACL-R surgery. The classifier's 

performance degradation in detecting ACL-R athletes injured 

knee during multiple visits supports athletic trainers and 

physicians' decision-making process to confirm an athlete's safe 

return to sport. 

 
Clinical Relevance— This study develops computational 

models based on causal analysis of gait data to support athletic 

trainers and medical practitioners' decision to return athletes to 

sport post ACL-R surgery. 

I. INTRODUCTION 

An Anterior Cruciate Ligament Reconstruction (ACL-R) 
is a common surgery among high-level athletes, with 
approximately 250,000 surgeries in the U.S. per year [1]. 
Athletes elect to have ACL-R to return to prior activity levels; 
however, only 55% of competitive athletes return to these prior 
levels of sport [2]. Accompanying low rates of returning to the 
sport, these patients also experience poor subjective function, 
higher risks of subsequent injury, and greater risk of post-
traumatic osteoarthritis [3]. These detrimental outcomes 
acutely following ACL-R and returning to activity may 
suggest that current return to sport assessment may not 
accurately identify functional deficits within the patient. 

The current return to sport assessment consists of muscle 
strength, dynamic functional tasks, postural stability, and a 
validation questionnaire to track patient progress [4][5]. These 
studies show a lack of agreement in setting appropriate criteria 
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that can be used to release athletes to unrestricted physical 
activity after ACL-R [6][7]. 

Clinical studies in kinesiology reported that the post-
surgery variations in knee kinematics provide significant 
insights into the long-term consequences of an ACL-R [3][8]. 
A study by Miyazaki et al. reported an increase in knee varus 
moment by one percent contributed to a 6-factor growth in 
osteoarthritis progression [9].  Butler et al. [10] observed a 21 
percent increase in knee varus moment while walking in 
subjects after ACL rupture compared to healthy individuals. 
These variations in knee moments increase as time progresses. 
A study also showed that the knee and hip level sagittal lower 
extremity kinetic accommodations are reported following 
ACL-R [11]. 6-12 months after ACL-R, individuals' walking 
gait/pattern altered compared to a healthy group. These 
variations include reduced knee extension moments and 
reduced knee flexion [11]. This reduced knee extension and 
knee flexion angles are associated with weakness in the 
quadriceps up to a year post ACL-R [11].  

The earlier research insights that specified gait variations 
post ACL-R are used as the basis for our current study. This 
work hypothesizes that as time progresses and athletes get 
back to their regular fitness, the specific variations found in 
gait right after ACL-R surgery will slowly disappear. These 
variations found in an individual's gait post ACL-R can be 
quantified to develop a methodology that supports tracking 
athletes' rehabilitation progress. To achieve this, the current 
work develops a methodology that utilizes computational 
modeling methods that identify gait variations in signals 
captured by inertial sensors to classify the ACL-R knee of an 
athlete. 

II. RELATED WORK 

The recent emergence of inertial sensors in tracking human 
gait provides more precise and objective observations. 
Investigating gait data provides kinetic and kinematic 
information on individuals' functional motor features that help 
define outcome evaluations and provide therapeutic 
interventions. Current gait analysis tools like force plates and 
stereophotogrammetry provide precise and quality data related 
to gait kinematics [14].  

Standard tools also have several drawbacks, such as setup 
time, cost, and range, as they are confined to camera defined 

Virginia, Charlottesville, Virginia, 22908, USA (email: 
joehart@virginia.edu) 

3J. Lach is with the Department of Electrical & Computer Engineering, 

School of Engineering & Applied Science, George Washington University, 
Washington D.C., 20052, USA (email: jlach@gwu.edu) 

. 

Rehabilitation Tracking of Athletes Post Anterior Cruciate 

Ligament Reconstruction (ACL-R) Surgery Through Causal 

Analysis of Gait Data & Computational Modeling 

Varun Mandalapu1, Joseph M. Hart2, John Lach3, Senior Member, IEEE, and Jiaqi Gong4 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 980



 

 

 

space [14]. On the contrary, inertial sensors can be used to 
analyze gait data outside of laboratories and can be accessed 
by the researcher and clinicians regularly [11][14][15]. On the 
other hand, the inertial sensors are lower in cost and can be 
used in any space. The increase in the adoption of inertial 
sensors supports an extensive collection of gait data by 
clinicians and researchers to enhance rehabilitation methods 
and validate the research. 

Earlier inertial sensors research in gait analysis focused on 
spatial and temporal features of gait data coming from the 
patient population to identify gait patterns, the pathologies in 
these studies are characterized by substantial gait deviations 
[14]. Observed differences showed changes in step length of 
0.6 m for stroke patients [16] and 0.5 m for patients with 
Parkinson's disease [17]. Injuries like knee osteoarthritis and 
ACL-R alter angular kinematics and kinetics of joints instead 
of spatial and temporal deviations that can lead to joint 
impacting diseases like osteoarthritis. 

Current research investigating inertial sensor data for 
angular kinematics is not highly accurate and clinically useful 
[14].  Error rates in these techniques vary significantly 
between a human knee and a robotic knee due to sensor 
placement and orientation issues [18]. The reported error rates 
in these studies make them suitable for identifying gait patterns 
with large deviations. Some abnormal gait patterns changes 
related to ACL-R have subtle variations that need to be 
identified from the gait data [14].  

Our earlier study [11] used a causality-based approach that 
captures the causal interactions between different body parts 
that support better modeling. Nolte et al. [19] formalized the 
causal effects between different pairs of signals and named the 
interaction between signals as a phase slope index (PSI). Gong 
et al. [20] successfully applied this causal-based approach to 
quantify the interactions between body parts in multiple 
sclerosis-based patients. Inspired by this work [20], we 
extracted causal features from ACL-R motion data captured by 
wearable sensors to develop computational models that can 
classify athletes' ACL-R knee [11][12].   

The promising results from this study [11] encourage us to 
extensively analyze causal features and develop a 
computational model-based rehabilitation method to track the 
subject's progress post ACL-R. This current study develops a 
rehabilitation tracking method by capturing gait data from 
ACL-R subjects during two visits (first visit 3-6 months post 
ACL-R and second visit 9 months post ACL-R). The gait data 
captured during the first visit is used to extract causal features 
and develop computational models that accurately classify the 
subject's ACL-R knee (Left (L) Vs. Right (R)). The models 
validated and trained on first visit data are applied on second 
visit data to track the prediction capability and confidence. The 

reduction in classification confidence of computational 
models during the second visit acts as a supporting indicator 
for subjects' return to play decision making. 

III. METHODOLOGY 

This section focuses on participant recruitment, data 
collection protocol, signal processing methods, and 
computational models to classify ACL-R individuals. Fig. 1 
shows the proposed approach that starts with inertial 
measurement collection, extracts causal features, and then 
develops computational models for ACL-R classification. 

A. Participant Demographics 

A total of 89 participants with ACL-R knee were recruited 
for this study. Of these 89 participants, 8 participants also 

completed their visit 2 for data extraction. Patient 
demographics can be found in Table I. All ACL-R participants 
were referred from a single academic orthopedic clinic, and 
their first visit for data collection is scheduled approximately 
six months after surgery, and the second visit is 9 months post-
surgery. Even though it makes sense to collect and add data 
before surgery, there is no realistic possibility as it is hard to 
predict which athlete will get injured or even from injured 

TABLE I. PARTICIPANT DEMOGRAPHICS 

 
Demographics ACL-R Visit 1 ACL-R Visit 2 

Total Subjects (N) 89 8 
Age 24.4 + 11.1 21.0 + 6.7 

Gender (M:F) (44:45) (3:5) 
Height (cm) 172.0 + 9.8 175.6 + 7.2 
Mass (Kg) 72.7 + 14.7 66.7 + 15.8 

ACL-R Knee (R:L) (47:42) (5:3) 

 

Fig.  1. Proposed method to classify ACL-R subjects. 

 

Fig. 2. Placement of inertial sensors on participant (Left) and data collection 

setting (Right) 
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athlete due to injury concerns. All participants obtained a 
primary, isolated ACL-R with no surgical complications. The 
university's institutional review board approved this study, and 
all participants provided written informed consent. 

B. Gait Data from Inertial Sensors 

To measure gait data, we adopt five inertial monitoring 

units developed by Shimmer Sensing. These IMU units are 

equipped with a tri-axial accelerometer, gyroscope, and 

magnetometer. Two sensors are placed on the distal shanks, 

two on the distal forearm, and one on the posterior sacrum, as 

shown in Fig. 2. Once the participants are equipped with these 

sensors, we inform them to walk for 5 minutes at a speed of 3 

mph and jog for 3 minutes at a speed of 6 mph on a treadmill, 

as shown in Fig. 2. The data is collected at a 128 Hz sampling 

rate to attain maximum synchronization that supports 

complete body motion capture during walking and jogging 

trials. 

C. Feature extraction from gait data 

This study's primary focus is to extract causal features from 

gait data to develop computational models that classify 

reconstructed knee during two consecutive visits in one year. 

 

1) Causal Features from Gait: Existing causality algorithms 

such as Granger causality and phase slope index (PSI) have 

strict restrictions on input signal stationary properties. Prior 

research in this domain identified that accelerometer data is 

merged with multiple artifacts that make it challenging to 

meet all the causality algorithms' stationary requirements 

[20]. On the contrary, the data captured by the gyroscope 

meets the stationary requirements of a causal algorithm. In 

line with our earlier studies [11][12], we extracted causal 

features every 6 seconds from the gyroscope data collected 

during walking and jogging trials. To do this, we first segment 

the data into 6-second subsets and calculate the PSI. As it is 

challenging to calculate causal relationships in real-world 

datasets that consist of confounding relations and time lags, 

PSI is a proven method to formalize causal relations between 

signals from different sensors. PSI's central concept is that the 

cause comes before the effect in time, which provides a 

correlation between the slope of signals and influences their 

directions [19][21]. The slope mainly reflects the cross-

spectrum that occurs between signals [20]. The PSI values are 

arranged in the form of a causal matrix, as shown in Fig. 1. 

This study's causal features are extracted from the 3*3 matrix 

between the left ankle (LA) and right ankle (RA) as seen in 

Fig.1. This matrix is flattened out, and each value is named as 

features starting X1 to X9. These features act as the input for 

computation models to discriminate ACL-R knee.  

D. Datasets 

Temporal changes in gait data collected during walking and 

jogging are identified in individuals post ACL-R. To amplify 

the temporal changes from causality data, we use a moving 

average method that generates averaged individuals' causal 

features based on a sliding window method. A moving 

 
1 https://github.com/vmand4/Gait_DL_Models_EMBC 

average method for increasing temporal resolution helps 

classification algorithms in learning from a block of local data 

points. As there is no set principle for choosing the window 

length and stride length, we try two different window lengths 

of 0.5 minute and 1 minute with a stride length of 0.1 minutes 

in this work. The nine causal features were transformed based 

on these moving averages to provide uniform samples for all 

individuals. 

E. Computational Models 

Our earlier study [11][13] showed promising performances 
in classifying ACL-R knee (Left Vs. Right) using neural 
network algorithms. This work only focuses on Left Vs. Right 
ACL prediction instead of Injured Vs. Uninjured due to data 
collection constraints. Predicting Left Vs. Right ACL-R is an 
acceptable approach as the focus of this study is to apply 
models longitudinally and analyze rehabilitation based on 
athlete recovery that can be interpreted from algorithm 
misclassification. Encouraged by the previous findings, we 
apply four deep learning methods that capitalize on spatial and 
temporal characteristics. This work adopts a dropout layer 
after each connected layer to avoid overfitting convolution 
neural networks (CNN) and recurrent neural networks 
(RNN/LSTM/GRU). The deep neural models are trained using 
mini-batches with a size of 32. All four models1 are trained 
using a multitude of epochs as high variations will make 
models either under or overfit the training data. This work also 
uses binary cross-entropy for classification and adam 
optimizer for network optimization. 

We adopt a five-fold cross-validation process to validate the 
developed models that divide the data set into five sub folds. 
Four folds are used for training the model, and one fold is used 
for testing the model. This process repeats until the algorithm 
classifies all the observations into one of the two categories 
(Left Vs. Right Knee). The average of performances from five 
test folds was taken to evaluate the models. Once the model 
with high performance is observed, this work trains the best 
performing model on whole visit 1 data and then make 
predictions on visit 2 data to evaluate the classification 
confidence. The next section in this work reports the 
performance and confidence of algorithms. 

IV. RESULTS 

The results section in this study is divided into two 
subsections. The first subsection reports the four deep learning 
algorithms' classification performances on visit 1 and visit 2 
multi-sample subject data. Each algorithm's discriminative 
capabilities are evaluated based on three metrics: Area under 
the curve (AUC), Accuracy, and Cohen's Kappa. The best 
algorithm is decided based on the tradeoff between AUC and 
kappa values. The second subsection shows the confidence of 
the best performing algorithm observed in the first subsection 
to predict visit 1 and visit 2 data. 

A. Visit 1 & Visit 2 Classification Performance 

In this analysis, we only report the best results from three 

different moving average windows tested. Based on the 

internal performance metrics evaluation, we observe that the 

data extracted from a moving average of 1 minute improved 

models' performance compared to raw and 0.5-minute 
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window data. Tables II and III below represent the 

performance of four deep learning models developed on 1 

minute moving average gait causal data collected during visit 

1 and visit 2, respectively. From the table I, we can observe 

that the convolution neural networks validated on visit 1 data 

performed better than the other three algorithms developed in 

this study. One reason for this is CNN's ability to characterize 

both spatial and temporal characteristics present in the input 

features. From Table III, we can observe that the classification 

performance of algorithms trained on visit 1 to predict data 

captured during visit 2 for 8 subjects reduced drastically. The 

CNN algorithm that classified ACL-R limb with 0.95 and 

0.96 AUC during visit 1 dropped to 0.55 and 0.47 for walking 

and jogging data during visit 2. This reduction in 

performances prompted us to understand the confidence of 

algorithms in classifying each subject. 

TABLE II: MODEL PERFORMANCE FOR LEFT VS RIGHT ACL-R KNEE 

PREDICTION FOR VISIT 1 DATA 

ML 
Algorithm 

Walk Jog 

AUC Kappa Accuracy AUC Kappa Accuracy 

CNN 0.95 0.90 95.16 0.96 0.93 96.40 

LSTM 0.90 0.79 89.52 0.82 0.64 82.30 

GRU 0.92 0.85 92.39 0.92 0.83 91.80 

Simple 
RNN 

0.94 0.89 94.35 0.96 0.91 95.62 

TABLE III: MODEL PERFORMANCE FOR LEFT VS RIGHT ACL-R KNEE 

PREDICTION FOR VISIT 2 DATA 

ML 
Algorithm 

Walk Jog 

AUC Kappa Accuracy AUC Kappa Accuracy 

CNN 0.55 0.091 53.30 0.47 -0.04 49.4 

LSTM 0.52 0.043 51.80 0.35 -0.26 35.70 

GRU 0.50 -0.01 51.20 0.49 -0.02 49.40 

Simple 
RNN 

0.53 0.062 54.57 0.47 -0.05 48.21 

B. Visit 1 & Visit 2 Prediction Confidence 

The above subsection's algorithms' performances are based 

on multi-sample subject data that consists of multiple 

prediction outcomes for each subject. As the confidence need 

to be calculated per subject rather than per sample, this work 

developed a confidence based approach. To achieve this, we 

capture the prediction made by algorithm on all samples in the 

data set and group the predictions based on each subject's 

identity value. Once the predictions are grouped, we calculate 

the count of all correct predictions and divide it by the total 

number of samples present for that subject. The outcome will 

be a confidence value between 0 and 1 (0 to 100 percent). 
In order to understand the confidence of the algorithm in 

predicting each subject's ACL-R knee, this work developed a 
box plot for both visit 1 and visit 2 confidence values. Fig. 3 
shows that the algorithm confidences in predicting the ACL-R 
knee of subjects during visit 2 reduced by a huge amount 
compared to visit 1. This finding is in line with our hypothesis 
that as the time progresses and the subject is getting back to 
their normal health condition, the specific variation found post 

ACL-R might disappear, and the data distributions will vary. 
These data distribution variations will make it harder for the 
ML algorithms to predict the original impacted knee. 

V. DISCUSSION 

Return to sport decision-making post ACL-R surgery 

without future complications and reinjury has been a huge 

challenge. This study focuses on developing a computational 

modeling based rehabilitation tracking of athletes using the 

causal features extracted from their gait data during two 

consecutive visits scheduled at 6 months and 9 months post 

ACL-R. The hypothesis is that computational models' ability 

to classify ACL-R knee reduces as time progresses, and the 

subject returns to their regular activity. 

 In general, computational models can predict well when 

the test data comes from a similar distribution of the data they 

were trained on. We use this fundamental concept in 

modeling to track rehabilitation progress. Earlier research 

indicated that gait data in athletes post ACL-R have 

identifiable variations, and these variations will disappear as 

the athlete recovers from ACL-R. Based on the modeling 

fundamental discussed above, the algorithm, when validated 

on first visit gait data, performs well in classifying ACL-R 

knee. It can capture the specific variations found post ACL-

R. As time progresses and the subject recovers from ACL-R, 

gait data's variations start to disappear and reduce the model 

performance. This phenomenon was tested using a two 

sample Kolmogorov-Smirnov test that identifies if the data 

collected during visit 1 and visit 2 have similar distributions. 

We observed that the p-values are in the range of 0 to 0.092 

for all 9 features from this nonparametric test as shown in 

Table IV. There are only two features with a p-value greater 

than 0.05, but they are still less than 0.092. As the p-values 

are very low, we can determine that the distribution of gait 

data collected during visit 1 and visit 2 varies. This 

phenomenon is also represented in the huge drop of 

performance metrics and confidence between visit 1 and visit 

2, as shown in table II, III, and fig. 3. These interesting 

Fig.  3. Algorithm Confidences in classifying ACL-R (Left Vs Right) 

during Visit 1 and Visit 2 
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findings from causal data also prompted us to study their 

interaction with domain variables. 

TABLE IV: P VALUES OF FEATURES AFTER KOLMOGOROV SMIRNOV TEST ON 

VISIT 1 AND VISIT 2 DATA 

Features p-value 

X2, X3, X4, X5, X6, X8, X9 <0.05 

X1 & X7 >0.05 & < 0.092 

 

To understand the interactions between causal and domain-

related features, we calculated the Pearson correlation 

coefficient between domain data variables collected using 

International Knee Documentation Committee (IKDC), Knee 

Injury and Osteoarthritis Outcome Score (KOOS), strength, 

symmetry, Tampa, and gait causal features. The correlation 

results show that the domain data is least correlated with gait 

causal features. This low correlation is specifically true in the 

case of variables from questionnaire data. One reason might 

be the nature of tasks being performed. Adopting causal-

based systems is less intrusive and mitigates bias in the self-

questionnaire to track rehabilitation. This work's implications 

help both trainers and athletes track the rehabilitation process 

and reduce the possibility of reinjury. Based on an algorithm's 

confidence value in detecting ACL-R individuals 

reconstructed knee, trainers and physicians can assess an 

athlete's recovery progress. This confidence value supports 

developing a personalized recovery treatment that helps 

athletes return to sport quickly and with a lower reinjury risk. 

There are some potential limitations in the current study 
that will be addressed in our future research study. First, this 
study's data collection is done in a controlled environment 
where athletes walk and jog on a treadmill.  It is crucial to 
study these algorithms' performance from the data collected 
during real practice sessions on training grounds. In addition 
to this, we are also working with domain experts to set a 
feasible confidence value that supports a return to sport 
decision-making. Moreover, a longitudinal study with more 
subjects coming for a visit 2 is in the works. This study's final 
opportunity is to develop a decision support system that 
considers domain-specific variables and sensor-based gait data 
to predict athlete return to sport accurately. 
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