
  

 
 

Abstract— To cope with the high intra-subject variability of 

muscle activation intervals, a large amount of gait cycles is 

necessary to clearly document physiological or pathological 

muscle activity patterns during human locomotion. The 

Clustering for Identification of Muscle Activation Pattern 

(CIMAP) algorithm has been proposed to help clinicians 

obtaining a synthetic and clear description of normal and 

pathological muscle functions in human walking. Moreover, this 

algorithm allows the extraction of Principal Activations (PAs), 

defined as those muscle activations that are strictly necessary to 

perform a specific task and occur in every gait cycle. This 

contribution aims at assessing the impact of the number of gait 

cycles on the extraction of the PAs. Results demonstrated no 

statistically significant differences between PAs extracted 

considering different numbers of gait cycles, revealing, on 

average, similarity values higher than 0.88. 

 
Clinical Relevance—This contribution demonstrates the 

potential applicability of the CIMAP algorithm to the analysis of 

subjects affected by neurological disorders, for whom the 

assessment of motor functions may be of the uttermost 

importance and only a reduced number of gait cycles can be 

acquired. 

I. INTRODUCTION 

The analysis of surface electromyographic (sEMG) signals 
is commonly used to quantitatively assess normal and 
pathological muscle functions in human walking. Moreover, 
the assessment of sEMG signals can be a valuable tool in the 
evaluation of locomotion pathologies and rehabilitation 
protocols [1]. However, the great stride-to-stride variability of 
sEMG signals collected during gait [2], [3], even in healthy 
subjects, may strongly reduce the interpretability and 
reliability of the results. More specifically, previous studies 
reported that a subject’s walk can be characterized by 4-5 
different muscle activation modalities (i.e., number of muscle 
activation intervals occurring within the same gait cycle) [2], 
[4] and different patterns within the same modality. Hence, a 
specific muscle may be activated with a variable sequence of 
patterns during the walking task. To cope with the high intra-
cycle variability of the sEMG signals and to increase the 
interpretability and reliability of the results, the CIMAP 
(Clustering for Identification of Muscle Activation Pattern) 
algorithm was recently developed [5], [6] and validated on 
several healthy and pathological populations [7]–[9]. The 
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CIMAP algorithm is based on a hierarchical clustering method 
that allows the extraction of the different patterns. Its 
application permits the characterization of cyclical movements 
and the extraction of the Principal Activations (PAs). From a 
biomechanical point of view, PAs can be defined as those 
muscle activations that are strictly necessary to perform a 
specific task [6]. This algorithm allows clustering together the 
gait cycles showing similar sEMG activation intervals. Each 
cluster is described by an element (called cluster’s prototype) 
defined as the median of all the muscle activation intervals 
belonging to the same cluster. Then, PAs are computed as the 
intersection of all the representative clusters’ prototypes. In the 
optimized version of the CIMAP algorithm, to select the 
representative clusters, a cutoff threshold (𝑇ℎ) on the number 
of gait cycles per modality is applied. Clusters with a number 
of gait cycles per modality higher than this threshold are 
considered as representative and, hence, used for PA 
extraction, while clusters with a number of gait cycles per 
modality lower than this threshold are considered as non-
representative [5], [7] and do not contribute to PA extraction. 
Therefore, the definition of this cutoff threshold is essential. 
On the one hand, the value of this cutoff threshold may affect 
the PA extraction. On the other hand, a high value of 𝑇ℎ may 
limit the applicability of this approach to datasets containing a 
reduced number of gait cycles (e.g., 30-s lasting protocols 
[10]). 

The aim of this contribution is to assess the robustness of 
the cutoff threshold and to assess the effect of the number of 
gait cycles on the principal activation extraction, enhancing 
the applicability of the CIMAP algorithm to shorter acquisition 
protocols and different cohorts (i.e., patients affected by 
musculoskeletal or neurological disorders). 

II. MATERIALS AND METHODS 

A. Sample Population and Data Acquisitions 

Gait data from 20 healthy subjects (11 males and 9 
females, age: 65.4 ± 5.1 years, height: 1.69 ± 0.09 m, weight: 
69.0 ± 12.2 kg) were retrospectively analyzed from our gait 
data warehouse (BIOLAB, Politecnico di Torino, Turin, Italy). 
None of the subjects had neurological or orthopedic 
pathologies that could affect gait performance. Gait data were 
recorded using a multichannel acquisition system for gait 
analysis (STEP32, Medical Technology, Italy) with a 
sampling frequency of 2 kHz. More specifically, sEMG, foot-
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switch, and joint kinematic signals were simultaneously 
acquired during gait. SEMG signals were recorded through 
active probes placed bilaterally over the following 5 lower 
limb muscles: Rectus Femoris (RF), Lateral Hamstring (LH), 
Gluteus Medius (GMD), Tibialis Anterior (TA), and Lateral 
Gastrocnemius (LGS). Foot-switches were positioned under 
the foot sole of both lower limbs to time-segment gait cycles. 
Finally, electrogoniometers were placed on the lateral aspect 
of both the knee joints to assess joint kinematics in the sagittal 
plane. 

All the enrolled subjects underwent the same experimental 
protocol consisting of an instrumented 3-minutes walk on a 
10-m straight walkway, at a self-selected speed. All 
participants signed written informed consent for the 
experimental procedure and all the experiments were 
performed following the Declaration of Helsinki. 

B. Data Pre-Processing 

Before the application of the CIMAP algorithm, sEMG 
signals were pre-processed to extract muscle activation 
intervals and to time-segment all gait cycles. 

To extract the muscle activation intervals, sEMG signals 
were first pass-band filtered through a 5th

 order Butterworth 
digital filter with a lower cut-off frequency of 40 Hz and an 
upper cut-off frequency of 300 Hz to remove motion and high-
frequency artifacts [11], respectively. Then, muscle activation 
intervals were extracted from the filtered sEMG signal using a 
muscle activity detector based on Long Short-Term Memory 
(LSTM) recurrent neural networks [12]–[14]. The muscle 
activation intervals computed through the muscle activity 
detector were defined as binary masks that were set equal to 1 

when the muscle was identified as active and 0 otherwise. To 
avoid erroneous transitions due to the stochastic nature of the 
sEMG signals, a post-processing step was applied to the 
detector’s output to remove activation intervals shorter than 30 
ms [15]. 

For each acquired muscle, muscle activation intervals were 
time-segmented into gait cycles using the initial contact 
timings extracted from the foot-switch signals [16]. Finally, to 
remove differences in gait cycle duration, all the segmented 
gait cycles were time-normalized to 1000 samples using the 
Linear Length Normalization (LLN) approach [17]–[19]. 

C. Extraction of Principal Activations (PAs) through CIMAP 

Algorithm 

The optimized version of the CIMAP algorithm [5] was 
applied to the normalized muscle activation intervals to 
extract PAs, separately for each muscle. The computation of 
the PAs using CIMAP algorithm mainly consists of 5 phases: 

i. Bottom-up hierarchical clustering is applied to the 
time-normalized sEMG activation intervals, separately 
for each muscle. The CIMAP algorithm iteratively 
merges the two “closest” clusters considering the 
Chebyshev and Manhattan distances, separately. The 
complete linkage method is used to select whether two 
clusters have to be merged; 

ii. The result of the bottom-up hierarchical clustering is 
represented by two different dendrograms. The final 
number of clusters (cutoff rule) is then selected, 
separately for each dendrogram, to obtain clusters 
characterized by small intra-cluster variability (𝐼𝐶𝑉). 
The intra-cluster variability is defined as the Euclidean 

 
Figure 1: Example of application of the CIMAP algorithm to the Tibialis Anterior (TA) muscle of a representative subject of the sample population. 

Panel (a) represents the time-normalized sEMG activation intervals before CIMAP application (gray lines). Panels (b) and (c), instead, represent sEMG 
activation intervals grouped into clusters (green lines), the clusters’ prototypes (orange lines), and the PAs (red lines) extracted considering two different 

values of the CIMAP threshold, respectively. Gray lines on top of panels (b) and (c) represents the non-representative clusters. 
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distance between each element of the cluster and the 
corresponding cluster’s prototype; 

iii. The cutting point is obtained using the difference 
between the variability of the two clusters that are 
merged and the resulting cluster. Three different 
cutting points are computed for each dendrogram and 
the best one is automatically chosen as described in [5]; 

iv. Non-representative clusters (i.e., clusters with a 

number of gait cycles per modality lower than a cutoff 

threshold - 𝑇ℎ) are discarded [5]; 

v. PAs are then extracted from all the representative 

clusters as the intersection of the clusters’ prototypes 

[5]. PAs are defined as binary masks that are set equal 

to 1 in correspondence of a principal activation and to 

0 otherwise. 
Figure 1 shows an example of the application of the 

CIMAP algorithm on the muscle activation intervals extracted 
from the Tibialis Anterior (TA) muscle of a representative 
subject of the sample population. Figure 1(a) represents the 
time-normalized sEMG activation intervals (gray lines) 
before the application of the CIMAP algorithm. Figure 1(b) 
and Figure 1(c), instead, represent the time-normalized sEMG 
activation intervals (green lines) grouped in clusters with the 
indication of the clusters’ prototypes (orange lines) and PAs 
(red lines) extracted considering two different values of the 
CIMAP threshold (𝑇ℎ), respectively. 

D. Robustness of the CIMAP Threshold 

To assess if the extraction of PAs is robust with respect to 
the CIMAP threshold 𝑇ℎ, the following procedure was 
followed, separately for each muscle. We compared the PAs 
extracted from the time-normalized muscle activation 
intervals of the whole dataset, considering 6 different values 
of the CIMAP threshold: 𝑇ℎ = 35, 30, 25, 20, 15, and 10 gait 
cycles per modality. These values of the CIMAP threshold 𝑇ℎ 
have been chosen to obtain a sufficient number of gait cycles 
per modality for the subsequent extraction of PAs. 

The PAs extracted using Th35, Th30, Th25, Th20, Th15, and 
Th10 were quantitatively compared by computing the similarity 
index (𝐷) between each pair of PAs as defined in (1): 

𝐷 = 1 − 
∑ |𝑃𝐴𝐴,𝑖 −  𝑃𝐴𝐵,𝑖|

𝑛
𝑖=1

𝑛
 (1) 

where 𝑛 represents the number of samples within a gait cycle 
(i.e., 1000 time-samples) and 𝑃𝐴𝐴,𝑖  and 𝑃𝐴𝐵,𝑖 represent the 

principal activations extracted from the 𝑖-th subject 
considering two different CIMAP thresholds (𝐴 and 𝐵), 
respectively. The similarity index 𝐷 ranges from 0 (i.e., no 
similarity) to 1 (i.e., complete similarity). 

E. Effect of the Number of Gait Cycles on Principal 

Activation Extraction 

To assess the effect of the number of gait cycles on 
principal activation extraction, the CIMAP algorithm was 
applied to three different datasets, each of them characterized 
by a different number of gait cycles: 

i. Dataset A: it contains all gait cycles recorded during the 
experimental sessions. On average, 153 ± 18 gait cycles 
were acquired from each subject of the sample 
population; 

ii. Dataset B: it contains, on average, 72 ± 9 gait cycles 
for each subject, corresponding to the gait cycles 
acquired during the first 10 10-m straight walkways; 

iii. Dataset C: it contains, on average, 35 ± 2 gait cycles 
for each subject, corresponding to the gait cycles 
acquired during the first 5 10-m straight walkways. 

These datasets, built to simulate increasingly shorter 
experimental protocols, were then used as inputs of the 
CIMAP algorithm to extract PAs. The effect of the number of 
gait cycles on principal activation extraction was 
quantitatively assessed computing the similarity index 
described in the previous paragraph (D. Robustness of the 
CIMAP Threshold) between PAs computed considering the 
three tested datasets. 

F. Statistical Analysis 

First, the Lilliefors test was used to assess the normality 
of data distributions. Second, depending on the results of the 
Lilliefors test, one-way repeated measures ANOVA (normal 
distributions) or Kruskal-Wallis test (non-normal 
distributions) was applied to test statistically significant 
differences between PAs. Finally, post-hoc analysis with 
Tukey’s adjustments for multiple comparisons was 
implemented. The statistical analysis was performed using the 
Statistical and Machine Learning Toolbox of MATLAB® 
release R2020b (The MathWorks Inc., Natick, MA, USA), 
setting the significance level (α) equal to 0.05. 

III. RESULTS AND DISCUSSION 

First, we present the results related to the robustness of the 
CIMAP threshold (𝑇ℎ). Then, we present the results related to 
the analysis of the impact of the number of gait cycles on the 
principal activation extraction. 

To avoid the detection of erroneous muscle activation 
intervals due to low-quality sEMG signals, sEMG data 
revealing Signal-to-Noise Ratio values lower than 6 dB were 
discarded. According to this cut-off threshold, 3 out of 20 
subjects of the sample population were excluded and, hence, 
the following results were extracted from the remaining 17 
healthy subjects. 

TABLE I. SIMILARITY VALUES (𝐷) BETWEEN PAS EXTRACTED CONSIDERING DIFFERENT NUMBER OF GAIT CYCLES. 

 
Muscles 

TA LGS RF LH GMD All Muscles 

Dataset A vs. 

Dataset B 
0.93 ± 0.09 0.93 ± 0.06 0.93 ± 0.06 0.91 ± 0.07 0.95 ± 0.04 0.93 ± 0.03 

Dataset A vs. 

Dataset C 
0.90 ± 0.17 0.92 ± 0.17 0.90 ± 0.17 0.89 ± 0.09 0.91 ± 0.17 0.90 ± 0.08 

Dataset B vs. 

Dataset C 
0.90 ± 0.16 0.90 ± 0.17 0.90 ± 0.17 0.88 ± 0.09 0.91 ± 0.17 0.90 ± 0.07 
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i. Robustness of the CIMAP Threshold 

Results revealed high values of the similarity index (𝐷 > 
0.94) between all the tested CIMAP thresholds (Th35, Th30, 
Th25, Th20, Th15, and Th10). Kruskal-Wallis’s test followed by 
post-hoc analysis with Tukey’s adjustments for multiple 
comparisons revealed statistically significant differences (p < 
0.01) between PAs extracted considering Th30, Th15, and Th10. 
However, considering the high similarity values between the 
PAs extracted considering the 6 different thresholds, the 
CIMAP threshold 𝑇ℎ was set equal to 10 gait cycles to allow 
the application of the CIMAP algorithm also to shorter 
acquisition protocols. 

ii. Effect of the Number of Gait Cycles on Principal 
Activation Extraction 

Table I shows the values of the distance metric (𝐷), 

averaged on the sample population, computed between each 
pair of PAs extracted considering the three different datasets. 
Kruskal-Wallis's test revealed no statistically significant 
differences between the three tested datasets (p > 0.62), 
suggesting a low effect of the number of gait cycles on the 
extraction of PAs. Figure 2 shows the boxplots of the 
similarity indexes relative to each of the 5 acquired muscles 
and the boxplot of the grand average over all the muscles. 
Considering the high similarity obtained between the PAs 
extracted from the 3 tested datasets, the CIMAP algorithm 
should be effectively applied to datasets containing a reduced 
number of gait cycles (e.g., 30-s lasting protocols). 

IV. CONCLUSION 

Results presented in this contribution demonstrated that 

PAs extracted from healthy subjects during a walking task at 

comfortable walking speed are not affected by the number of 

gait cycles considered as input of the CIMAP algorithm. 

Nevertheless, further studies are necessary to test the effect of 

the number of gait cycles also on sEMG signals acquired from 

pathological sample populations, such as patients affected by 

musculoskeletal or neurological disorders. 
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Figure 2. Boxplots of the similarity indexes 𝐷 relative to each of the 5 

acquired muscles and to the grand average over all the muscles, 

separately for each of the three tested datasets. Outliers are represented 

through circles. 
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