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Abstract— Many studies in literature successfully use classi-
fication algorithms to classify emotions by means of physiolog-
ical signals. However, there are still important limitations in
interpretability of the results, i.e. lack of feature specific char-
acterizations for each emotional state. To this extent, our study
proposes a feature selection method that allows to determine
the most informative subset of features extracted from physio-
logical signals by maintaining their original dimensional space.
Results show that features from the galvanic skin response are
confirmed to be relevant in separating the arousal dimension,
especially fear from happiness and relaxation. Furthermore,
the average and the median value of the galvanic skin response
signal together with the ratio between SD1 and SD2 from the
Poincarè analysis of the electrocardiogram signal, were found
to be the most important features for the discrimination along
the valence dimension. A Linear Discriminant Analysis model
using the first ten features sorted by importance, as defined by
their ability to discriminate emotions with a bivariate approach,
led to a three-class test accuracy in discriminating happiness,
relaxation and fear equal to 72%, 67% and 89% respectively.

Clinical relevance This study demonstrates the ability of
physiological signals to assess the emotional state of different
subjects, by providing a fast and efficient method to select
most important indexes from the autonomic nervous system.
The approach has high clinical relevance as it could be
extended to assess other emotional states (e.g. stress and pain)
characterizing pathological states such as post traumatic stress
disorder and depression.

I. INTRODUCTION

Emotions are very important in the life of human beings,
as they ensure survival and reproduction through adaptation
to the environment [1]. Emotions are a very complex net-
work of neuronal and hormonal interactions which strongly
influence decision-making processes [2].

Among the different systems of classification of emotions,
two are the most common: the categorical system and the
dimensional system. In the categorical system, emotions are
classified as discrete entities, independent of each other and
easily distinguishable. Commonly, six fundamental emotions
are identified (anger, fear, disgust, joy, surprise, sadness) and
of these emotions both facial expressions and their respective
interpretations are found to be universal throughout humanity
[3]. The poor congruence of the data coming from the
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researches and the considerable difficulties of researchers and
clinicians in identifying and describing emotions as categori-
cal [4], have led several authors to develop a less rigid model
of emotions, far from a categorical taxonomic system. The
human being, in fact, does not express emotions as specific
and discrete entities, but rather as ambiguous and blurred
experiences, often overlapping with each other. Emotions are
not clearly distinguishable and separable from each other. In
the last decade, many studies have adopted a bidimensional
approach to quantify emotions on a numerical scale [5][6]
thus facilitating their identification and characterization. In
this model, each emotion can be explained as the linear
combination of two specific and independent dimensions,
valence and arousal, by defining the circumflex model of
emotions. Valence (positive or negative) is able to classify
emotions along a continuum of pleasantness-unpleasantness.
Arousal, on the other hand, indicates the intensity of the
emotion in terms of physiological activation (low or high).
According to the dimensional model, the combination of
these two dimensions, associated with the physiological
response resulting from stimulation and cognitive attribution,
is hypothesized to give rise to the subjective emotional
sensation.

Many studies use dimensionality reduction/transformation
methods, such as principal components analysis (PCA) and
Fisher projection, in combination with a classifier [7][8].
Consequently, a new subset of transformed features is then
used for the classification rather then original features. How-
ever, despite a high model performance can be reached, the
importance and meaning of physiological values resulting
from using the original feature set is lost and the resulting
models loose employability and explanability in characteriz-
ing physiological variations due to different emotions.
In this study, we propose a methodological and interpretable
approach to select the most relevant features from the original
subset by maintaining their original values and we provide
a classification algorithm to recognize happiness, relaxation
and fear. Specifically, we use the electrocardiogram (ECG),
the blood volume pulse (BVP) and the galvanic skin response
(GSR) to create the classification algorithm for emotion
recognition.

II. METHODS
A. Study Design and Data

From the Continuosly Annotated Signals of Emotion
(CASE) database [9], we considered a subset of physio-
logical signals: ECG, BVP, and GSR, recorded from 30
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subjects subjected to video-stimuli. Annotations as well as
subjective ratings of the videos are provided together with the
dataset for each video. From the initial four emotions (hap-
piness, relaxation, boredom, fear) provided in the dataset,
we discarded boredom, since 70% of the subjective ratings
of videos annotated as boring were associated to the other
emotions, especially to relaxation. The three different emo-
tions were elicited by showing subjects 6 different videos,
2 for each emotion, randomized in the order of display and
separated each by a 2-minute blue screen visualization. Blue
screens were used to separate each emotional video from the
following one in order to bring signals to baseline condition.

Since all video durations were different and around 120
seconds, only the last 100 seconds were considered for each
video for the sake of feature extraction. By looking at the
videos, we noticed, indeed, how the last part of the videos
was more relevant for emotion elicitations. The video lengths
were then uniformed also in order to compute all features
for the classification as differences between each feature
computed on each video and the same feature computed on
the preceding blue screen.

B. Data Processing and Feature Extraction

ECG and BVP signals were downsampled at 250 Hz with
a previous anti-aliasing filtering stage with a 4th order zero-
phase low-pass Butterworth filter with cut-off frequencies
at 125 Hz and 25 Hz, respectively. The time locations of
each R peak on the ECG were extracted through a Pan-
Tompkins based algorithm, the location and corresponding
values of systolic and diastolic events from the BVP signal
were extracted and synchronized with R-events by looking at
maximum and minimum points between two successive R-
events, respectively. The considered fiducial points allowed
for the extraction of the following time series: tachogram
from the R events, the systolic time series as well as the
pulse pressure (PP), estimated as the difference between
corresponding systolic and diastolic BVP values, and pulse
arrival time (PAT) as the time interval between the pulse
onset and the corresponding R-peak. Time and frequency
domain heart rate variability features were extracted from
the tachogram, time and frequency blood pressure variability
measures were extracted from systolic time series, and the
first two statistical moments were extracted from PP and PAT.
Frequency domain features were computed with an autore-
gressive model with the Yule-Walker approach by choosing
the optimal order (in the range of 7-15) as the lowest order
that guarantees white residuals and/or minimized the Akaike
information criterion. The extracted features were:

ECG features: average and standard deviation of NN
intervals (AVNN, SDNN), power spectral density of RR in
very low (RR VLF), low (RR LF), high (RR HF) frequencies
and LF/HF, normalized power spectral density of RR in low
(RR LFn) and high (RR HFn) frequency ranges, first and
second standard deviations and their ratio from the Poincarè
analysis (SD1, SD2, SD ratio).

BVP features: average pulse pressure (AVPP), average
and standard deviation of systolic values (AVSYS, SDSYS),

diastolic values (AVDIA, SDDIA), power spectral density of
systolic values in low (SYS LF), high (SYS HF) frequen-
cies and normalized power spectral density of SYS in low
(SYS LFn) and high (SYS HFn) frequencies.

ECG-BVP features: average pulse arrival time (AVPAT)
and power spectral density of PAT in very low (PAT VLF),
low (PAT LF) and high (PAT HF) frequency ranges.

The GSR signal was pre-filtered at 2 Hz with a zero-phase
low pass Butterworth of 4th order and downsampled at 5 Hz.
In order to find the phasic component, a median filter was
applied by computing the median GSR of the surrounding
samples in an interval of +/- 4 seconds centered on the
current sample [10]. The median GSR was then subtracted
from the raw signal to obtain the phasic component. After
finding peak onsets (amplitude > 0.01 µS) and offsets (0 µS
< amplitude) on the phasic signal, a GSR peak was identified
on the raw signal between each onset and offset occurrences.

GSR features: The list of extracted features includes
the number of GSR peaks (GSR n peaks), the average rise
and recovery time of each GSR peak (AVGSR rise time,
AVGSR recovery time), GSR kurtosis (GSR kurt), GSR
skewness (GSR skew), GSR median (GSR med), GSR aver-
age (AVGSR), GSR standard deviation (SDGSR). In addition,
from the raw GSR signal filtered with a Butterworth band-
pass filter of the 2th order from 0.5 to 1 Hz we obtained
the slope (GSR slope), maximum signed amplitude between
two consecutive maxima (MAXGSR sign amp), as well as
the average, standard deviation and maximum of the first
derivative (AVGSR der, SDGSR der, MAXGSR der).

C. Feature Selection and Classification

As classification labels we used the annotations provided
by the database corresponding to happiness, relaxation and
fear. Of note, these annotations match with subjective ratings,
thus providing a reasonable balance in defining the three
classes. The dataset was randomly split into training (70%
of the sample, 126 records) and test (30% of the sample,
54 records) datasets. Stratification was applied in order to
maintain the same proportion of each emotion in the training
and test partitions.

The choice of the most relevant features was performed
only considering the training dataset in order not to generate
bias in the prediction of test observations. Our method relies
on an analytical approach which allows for feature sorting
by importance in separating the emotions. Specifically, in
order to understand features that produce a more effective
separation among the three emotions, 2D boxplots were
created between selected couples of features. For each feature
pair, considering all the possible combinations, the average
of each feature +/- 95% confidence intervals (CI) were com-
puted. Consequently, 2D boxplots were built by centering
the rectangles around the coordinates of the corresponding
average values, where the length of the sides of the rectangles
were set equal to the CI of the two averages. A specific
example is shown in Fig. 1.

Only those feature pairs where rectangles of different emo-
tions did not intersect among each other were considered.
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Feature importance was then defined based on the area of
the triangular region enclosed by the average values of each
emotion. A larger area corresponds to a greater separation
of the three emotions in the space created by the pairs of
features and therefore to higher importance of the features.

Then, we computed Pearson’s correlation between all the
feature pairs and we chose the first ten features which showed
highest triangular areas and were not highly correlated
(>0.65 or <-0.65) with more than one feature belonging
to a more relevant pair.

The selected features were fed to a Linear Discriminant
Analysis (LDA) model in order to classify the three emo-
tions. Given the small size of the dataset (180 records =
6 videos*30 subjects), classification results on the test set
were compared with the average result obtained on a 10-fold
cross-validation of the training dataset. In order to address
over-fitting of the model, accuracy was computed for the
training cross-validation and testing procedure. The model
was built by using the singular value decomposition as solver
and features were normalized between their minimum and
maximum.

III. RESULTS

By computing all the possible combinations of feature
pairs, 435 pairs were found. Of all these combinations, 63
showed no intersection among rectangles created with 2D
boxplots.

Fig. 1 shows the 2D boxplot with the greatest area of the
triangle formed by the feature averages. As we can notice,
the most relevant feature pair able to separate the three
emotions includes AVGSR and SD ratio from the Poincarè
analysis. The figure shows also the capability of these two
features in dividing low from high arousal by the yellow
dotted line. Fear and happiness belong indeed to high arousal
while relaxation is linked to low values of arousal. The
separation in the valence dimension is shown by the black
dotted line. Fear belongs to low valence while happiness
and relaxation belong to high valence, since they are more
pleasant emotions.

From the feature selection analysis, the pairs
SD ratio/AVGGSR and SD ratio/GSR med resulted to
be the ones with the highest triangular area. In particular,
AVGGSR and GSR med appeared to be part of the highest
number of pairs which did not show any intersection among
the three rectangles (both features appeared in 29 pairs out
of 63). It means that in most of the cases, the presence of
AVGGSR and GSR med in a pair was necessary in order
to prevent an overlap among the three emotions. From all
the other features, whose appearances in the pairs with
no intersection ranged from 2 to 5, we discarded those
which were highly correlated with more than one feature
associated to pairs linked to higher triangular areas. In this
regard, from the first twelve important features we discarded
SDNN and SD2 which were found to be highly correlated
between theirselves and with SD ratio and SYS LF.

At last, the ten most relevant features from the ECG
identification (SD ratio, RR HFn), from the BVP (SYS LF),

Fig. 1. 2D boxplots are represented. * represent the averages of SD ratio
on x axis and AVGSR on y axis. All rectangles are linked to the average
features +/- 95% confidence intervals for the average estimations. The
triangle joining the average values of the features was used as a selection
criterion for feature importance. The highest the area of the triangle the
more important the feature pair was considered. The yellow dotted line
shows how emotions are separated in terms of arousal (fear and happiness:
high arousal/ relaxation: low arousal). The black dotted line shows emotion
separation in terms of valence (happiness and relaxation: high valence/ fear:
low valence)

from the combined identification between ECG and BVP
(AVPAT) and from the GSR (AVGSR, GSR med, SDGSR,
MAXGSR sign amp, GSR n peaks, AVGSR rise time) were
used.

Results from the model computation are reported in Tab.
1, dividing the model performance with and without the 10
fold cross-validation. In the upper part of the table results
from LDA model with 10 fold cross-validation are presented
in terms of average training accuracy and average validation
accuracy for each emotion. Test accuracy is also reported
divided by emotions. Overall, by joining the three emotions,
we reported the average accuracy for training, validation and
test sets.

IV. DISCUSSION

The purpose of the study was to create a classification
algorithm for the recognition of three emotions (happiness,

TABLE I
LDA MODEL RESULTS OBTAINED FOR EACH EMOTION ON TRAINING,

VALIDATION AND TEST SETS.

Training and Validation Accuracy (%)
Data Set Happy Relax Fear

Training set 57 70 72
Validation set 56 60 65

Test Accuracy (%)
Test Set 72 67 89

Averaged Accuracy among emotions (%)
Data Set Accuracy

Training Set 66
Validation Set 60

Test Set 76
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relaxation and fear) by means of features extracted from three
physiological signals: ECG, BVP and GSR.

While many studies try to increase the accuracy of models
using space reduction methods, creating a new feature space,
we maintained the original physiological features in order to
identify the most effective in separating the three emotions.

The feature selection method that we used was easy
to implement and it succeeded in sorting and combining
features preserving their original values unlike, transforming
the space by Fisher projections and PCA, as it is usu-
ally performed for this aim. The results obtained with the
classification model are in line with similar studies where
a three-emotion user independent classifier is used, whose
performances range from an average test accuracy of 62%
in [11] to 78% in [12].

Our feature selection analysis shows that most of the
relevant features found are extracted from the GSR signal.
It is well known that this signal is highly related to the
arousal dimension and it is already a common measure used
to quantify emotional arousal in a control scenario [13]. In
this regard, AVGSR and GSR med were found to be the most
relevant features since in almost all feature pairs which did
not show any overlap among the three emotions, one of
these two features was present. Specifically, GSR features
helped separating fear, the emotion with the highest arousal
values with an accuracy of 89% by the LDA model. Here,
the sympathetic branch of the autonomic nervous system is
highly excited and sweat gland activity increases. Indeed as
it can be noted in Fig.1, AVGSR has higher values for fear
and the rectangle related to this emotion is well separated
from the others. On the other hand, happiness and relaxation
are characterized also by negative values of AVGSR since
all the features were computed as differences between each
emotional video and the preceding blue screen. This means
that, in some cases for the two emotions the gland activity
is lower than when subjects looked at the blue screen only.

Cardiovascular features were also found to be important in
separating the three emotions. Of all the features considered,
the one that has received the most importance is SD ratio.
SD features are relatively important as a marker of sym-
phathovagal activation, with SD1 reflecting parasympathetic
activity and SD2 sympathetic modulation [14]. The main
reason we did not find significance in the most commonly
used frequency domain indices might be due to the short
intervals (100s) that we had to consider. From Fig. 1 we can
see how among the three emotions, the values of SD ratio
are greater for relaxation, where parasympathetic activity
prevails. Although happiness is a high arousal emotion, it
does not elicit as much arousal as fear. Therefore, it is
reasonable as confirmed by our analysis that there is more
difficult to separate it from relaxation. Some test observations
were indeed confused between happiness and relaxation, as
revealed by our analysis.

V. CONCLUSION

We here present an original characterization of emotional
states through physiological measures extracted from ECG,

BVP and GSR time series. In particular, we focus on a
feature selection method aimed at preserving the original
physiological values of the features without incurring in
space reduction methods.

In general, our results validate the importance of GSR
features in describing the arousal dimension. Overall, the
average and median values of the GSR signal, and SD ratio
from the Poincarè analysis on the ECG were found to be
the optimal measures that separate happiness, relaxation and
fear. To further validate our assessment along both arousal
and valence dimension, we used the first ten important
features extracted from the three signals to develop a LDA
model able to identify the different emotions with accuracy
as high as 76%.
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