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Abstract— The clinical application of diffusion MRI is practi-
cally hindered by its long scan time. In this work, we introduce
a novel imaging and parameter estimation framework for
time-efficient diffusion MRI. To improve the scan efficiency,
we propose ADEPT (Accelerated Diffusion EPI with multi-
contrast shoTs), in which diffusion contrast settings are allowed
to change between shots in a multi-shot EPI acquisition (i.e.
intra-scan modulation). The framework simultaneously corrects
for artifacts related to shot-to-shot phase inconsistencies in
multi-shot imaging by iteratively estimating the phase map
parameters along with the diffusion model parameters directly
from the acquired intra-scan modulated k-space data. Monte
Carlo simulation experiments show the effective estimation of
diffusion tensor parameters in multi-shot EPI diffusion imaging.

I. INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) is a pow-
erful, non-invasive technique that is able to infer tissue
microstructure at the cellular level by probing the random
microscopic motion (i.e., diffusion) of water molecules. In
conventional quantitative dMRI, spatial maps of diffusion
parameters are estimated from multiple diffusion-weighted
(DW) images with different diffusion sensitizing gradient
strengths and directions. It relies on a two-step procedure.
First, a set of differently diffusion weighted images are re-
constructed individually. Secondly, a diffusion model is fitted
voxel-wise to the resulting set of DW images. Since many
DW images are currently required for accurate and precise
diffusion parameter estimation, dMRI suffers from a long
scan time thereby limiting patient throughput and comfort.
Hence, there is a strong need for scan time reduction.

In recent years, advanced reconstruction methods have
been developed for dMRI that allow scan time reduction
by intermixing spatial frequency encoding with diffusion
weighting (i.e. by sampling the k-q space). In these ap-
proaches, the intermediate step of the image reconstruction is
avoided by combining the image reconstruction and parame-
ter estimation steps in an integrated single-step parameter es-
timation framework that allows to estimate the diffusion pa-
rameter maps directly from the k-q-space data [1], [2]. Such
joint reconstruction and estimation framework can be used
in combination with fast acquisition schemes such as multi-
shot echo-planar imaging (EPI) to reduce the acquisition time
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of dMRI [3]. Multi-shot diffusion weighted imaging (DWI),
which consists of segmenting the readout into multiple shots,
holds a great potential for high resolution diffusion imaging
as compared to single-shot imaging. It is shown to be less
sensitive to magnetic field inhomogeneities and induces less
off-resonance distortions [4]. However, coherent bulk motion
during the application of the diffusion sensitizing gradients,
can introduce phase shifts in the acquired signal. Rigid
motion (involving translation and rotation) causes linearly
varying phase maps, while non-rigid motion, such as brain
pulsatile motion, may lead to non-linear phase variations
[5]. In a multi-shot EPI acquisition, these phase maps may
change from shot to shot, as each shot corresponds with a
different excitation and each readout experiences a different
phase corruption. If not corrected for, the shot-to-shot phase
inconsistency may lead to image-space ghosting artifacts [6].

Various methods have been proposed to correct for phase
related artifacts in multi-shot DWI. A common approach is
to acquire an additional low-resolution navigator scan with
the same diffusion weighting as during the high resolution
scan, where it is assumed that the spins experience the same
phase errors in both scans. The navigator scan can then be
used to correct the motion-induced phase errors in the image
space before the EPI shots are combined [7]. Alternatively,
the phase map can be estimated retrospectively from the data
to avoid the acquisition of additional navigator data. This can
be done using a self-navigated acquisition scheme such as
PROPELLER [8] or EPIK [9], or by exploiting the structured
low-rank property of multi-shot DW data or a slowly varying
phase map [10].

In this paper, we propose Accelerated Diffusion EPI
with multi-contrast shoTs (ADEPT). ADEPT consists of a
joint model-based reconstruction and parameter estimation
framework and accompanying image acquisition strategy that
allows accelerated dMRI by varying the diffusion contrast
settings for each shot in a multi-shot acquisition, introducing
intra-scan modulation. From the multi-contrast k-space data,
in which each EPI shot is encoded with a different contrast
weighting, the parameters of a diffusion tensor model are
directly estimated, thereby surpassing the intermediate image
reconstruction step of the conventional dMRI approach. To
account for the phase mismatch between different shots,
ADEPT estimates the phase map parameters for each shot
(assuming a linear model) jointly with diffusion tensor pa-
rameter maps. Through Monte Carlo simulations, ADEPT
is evaluated in terms of accuracy and precision and shown
to outperform the conventional two-step diffusion parameter
estimation approach.
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II. THEORY AND METHODS

This section describes the signal model of intra-scan mod-
ulated multi-shot diffusion data and introduces the ADEPT
framework for joint diffusion tensor and phase parameter
estimation.

A. DIFFUSION SIGNAL MODEL

Considering intra-scan modulated multi-shot EPI acquisi-
tion, where each shot of a multi-coil, multi-shot acquisition in
the k-space is acquired with a different diffusion weighting,
we can model the measured vectorized k-space diffusion data
qqqn,c ∈ Cnk×1 of the c-th coil (c ∈ {1, · · · ,nc}) and n-th shot
(n∈ {1, · · · ,ns}), with nk the number of k-space samples per
shot, nc the number of coil channels and ns the total number
of shots, as:

qqqn,c = AAAnFCCCc fff n + eee , (1)

with fff n ∈ Cnv×1 the vectorized underlying noise free,
fully sampled, DW image, defined on the grid points rrr =
(rx( j),ry( j)) ∈ Rnv×2, with nv the number of voxels in the
image, and AAAn ∈ {0,1}nk×nv , F ∈Cnv×nv , CCCc ∈Cnv×nv linear
operators that describe the binary sampling mask correspond-
ing to the n-th shot, the Discrete Fourier Transform operator
and a diagonal matrix representing the coil sensitivity map
of the c-th coil, respectively. Furthermore, eee ∈ Cnk×1 is
a complex valued, additive noise contribution that can be
modeled as a zero mean, complex, Gaussian random variable.

Let SSS0 = (S0( j)) ∈Cnv×1 denote the vectorized, complex-
valued, non-DW image, which includes time-invariant phase
components (caused by, for example, B0 and B1 field inho-
mogeneities, chemical shifts, or susceptibility differences).
Then, adopting the diffusion tensor imaging (DTI) model,
the DW image fff n with DW factor bn and diffusion gradient
direction gggn = (gnx,gny,gnz)

T can be modeled for each voxel
as:

fn( j) = S0( j)e−bbbT
n DDD( j)eiφn( j) , (2)

with bbbn = bn(g2
nx,2gnxgny,2gnxgnz,g2

ny,2gnygnz,g2
nz)

T ∈
R6×1 a vector of the independent components
of the 3 × 3 symmetric DW b-matrix, DDD( j) =
(dxx( j),dxy( j),dxz( j),dyy( j),dyz( j),dzz( j))T ∈ R6×1 the
vectorized, 3 × 3 symmetric diffusion tensor, and φn( j)
the phase contribution that accounts for the effect of
coherent bulk motion during the application of the diffusion
sensitized gradients. If the motion is assumed to be rigid,
the corresponding phase maps in the image space for each
shot of the multi-shot EPI acquisition will be linear and can
be voxel-wise modeled as follows [11]:

φn( j) = θn0 +θn1rx( j)+θn2ry( j) , (3)

with θn0 and (θn1,θn2) the offset and slope parameters of the
motion-induced phase map, respectively.

B. JOINT PARAMETER ESTIMATION

Let DDD = (DDDT (1), · · · ,DDDT (nv))
T ∈R6nv×1 denote the vector

of symmetric diffusion tensors of all voxels. Furthermore,
let θθθ = (θθθ T

1 , · · · ,θθθ
T
ns)

T ∈ R3ns×1 be the motion-induced

phase map parameter vector of all shots, where θθθ n =
(θn0,θn1,θn2)

T is the motion-induced phase map parameter
vector of the n-th shot. Assuming the non-DW image, SSS0, is
estimated along with the diffusion and phase parameters, then
the joint least squares estimator of SSS0, DDD and the linear phase
parameters θθθ from the multi-shot multi-contrast k-space data
is given by:

D̃DD, S̃SS0, θ̃θθ = arg min
D̄DD,SSS0,θ̄θθ

(
∑
n,c
||qqqn,c−AAAnFCCCc fff n(DDD,SSS0,θθθ n)‖2

2

)
,

(4)
The large-scale optimization problem (4) is a non-linear
least squares problem which can be solved using the cyclic
Block Coordinate Descent (cBCD) [12] method. This method
allows to divide the main problem (4) into two less com-
plex sub-problems that are solved alternately in an iterative
scheme. In the first sub-problem, the cost function is mini-
mized with respect to DDD and SSS0,

D̃DD
t+1

, S̃SS
t+1
0 = argmin

D̄DD,SSS0

(
∑
n,c
||qqqn,c−AAAnFCCCc fff n(DDD,SSS0, θ̃θθ

t
n)‖2

2

)
,

(4.A)
whereas in the second sub-problem the cost function mini-
mized with respect to phase parameter vector, θθθ ,

θ̃θθ
t+1

= argmin
θ̄θθ

(
∑
n,c
||qqqn,c−AAAnFCCCc fff n(D̃DD

t+1
, S̃SS

t+1
0 ,θθθ n)‖2

2

)
,

(4.B)
Each sub-problem is solved using the trust region Newton
algorithm combined with Powell’s dog leg method [13].
The sub-problems (4.A) and (4.B) are initialized at DDD = D̃DD

t
,

SSS0 = S̃SS
t
0 and θθθ = θ̃θθ

t
, respectively, with D̃DD

0
= DDDini, S̃SS

0
0 = SSS0,ini

and θ̃θθ
0
= θθθ ini the initial values of the parameters. Since both

(4.A) and (4.B) are non-convex optimization problems, they
can contain multiple local minima. For this reason, a proper
initialization of the cBCD algorithm is vital to find the global
minimum. These initial values are found using a SENSE
reconstruction and estimation (SENSE-re) approach where
first, DW images are reconstructed separately for each shot
by performing SENSE reconstruction [14] using the BART
toolbox [15]. Next, the DTI parameters and non-DW image
are estimated per voxel from the reconstructed magnitude
images and their values are used as initial values in the
cBCD approach (DDDini, SSS0,ini). The initial values for the phase
parameters (θθθ ini) are estimated by fitting (3) to the phase
maps of the individually SENSE reconstructed images.

III. EXPERIMENTS

To evaluate the accuracy and precision with which ADEPT
can estimate diffusion tensor parameters from multi-contrast
multi-shot data in the presence of shot-to-shot phase varia-
tions, Monte Carlo simulation experiments were performed.
For this purpose, multi-shot multi-coil k-q-space data was
generated using the models (1) and (2). As ground truth
parameters, a 96× 96 diffusion tensor map and non-DW
magnitude image, which were both estimated from a real
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diffusion MRI dataset, were used. The phase of the (fully
sampled) non-DW image was assumed to be known.

The simulated k-q-space data consisted of ns = 64 (4
non-DW and 60 DW) EPI shots (b-value=1.15 ms/µm2),
each with a different gradient direction (distributed uniformly
over a sphere). For each of the 60 DW shots, a different
linear phase map was generated according to (3). The offset
and slope ground truth phase parameters θ0, θ1 and θ2
were drawn from zero-mean Gaussian distributions with
standard deviation π , π/rx(nv) and π/ry(nv), respectively.
Furthermore, the number of coils was set to nc = 8 and the
coil sensitivity maps from a multi-coil scan were used to
simulate the diffusion k-space data.

To construct the 64 shots, fully sampled k-space data
was generated for each shot, which was then retrospectively
under-sampled by applying an under-sampling mask. Four
different masks were used, where each mask samples the
central four lines of the k-space, whereas the non-central
part of the k-space is sub-sampled with a factor 4, as
illustrated in Fig. 1. Together, the four masks cover the whole
k-space. Each of the four masks was applied to the fully
sampled k-space data of i) the non-DW image, and ii) 15
out of the 60 differently DW images. Finally, the multi-
shot data was corrupted by additive, complex valued, zero
mean, Gaussian white noise. The noise standard deviation
was chosen to obtain Signal to Noise Ratio (SNR) values in
the range [10, · · · ,50], where the SNR is defined in image
space as the ratio of the spatial average of the noiseless,
fully sampled, non-DW image of one coil channel and the
standard deviation of the noise. For each SNR level, nr =
20 realizations of noisy data were generated for statistical
analysis.

The diffusion parameters, DDD, the magnitude of the non-
DW image, SSS0, and linear phase parameters, θθθ , were then
estimated from each noisy realization using SENSE-re and
our proposed approach, ADEPT. To improve parameter es-
timation robustness, background voxels were excluded by
defining a selection mask obtained by thresholding the non-
DW image based on the SNR [16]. The estimation perfor-
mance of both methods was evaluated using the following
quantitative performance measures: bias, defined as x̂− x,
where x̂ is the sample mean of the nr parameter estimates x̂
with ground truth value x, standard deviation (std), defined as
[Σ(x̂− x̂)2

/(nr−1)]1/2 and root mean square error (RMSE),
defined as [(x̂− x)2]1/2. For both methods, these measures
were calculated per voxel for Mean Diffusivity (MD) and
Fractional Anisotropy (FA). Next, the spatial means of the
masked region for the thus obtained bias, std and RMSE
maps were calculated. Furthermore, the accuracy and preci-
sion of the ADEPT phase parameter estimates were evaluated
by calculating their RMSE.

IV. RESULTS

Fig. 2 shows MD (top) and FA (bottom) maps estimated
from a simulated dataset acquired with the 4-shot multi-
contrast EPI sequence described in section III with SNR =
20. Estimated maps using SENSE-re (middle) are compared

Fig. 1. K-space sampling patterns of the individual shots of the 4-shot EPI
acquisition. The different colors represent different diffusion contrasts.

to those obtained with ADEPT (right), where the ground
truth MD and FA maps (left) are shown as a reference. Fig. 3
shows the estimated bias, standard deviation and RMSE
maps of both methods for MD (top) and FA (bottom)
as calculated from the Monte Carlo simulation experiment
described in the previous section with SNR = 20. Fig. 4
shows the spatial means of the bias, standard deviation and
RMSE maps calculated for different SNR levels. Fig. 5 shows
the RMSE (averaged over the shots) of the phase parameters
estimated using ADEPT and estimated by fitting (3) to the
SENSE-re reconstructed images.

V. DISCUSSION

Fig. 2 shows that the diffusion parameter maps estimated
with SENSE-re (middle) look noisier than those estimated
by ADEPT (right), which is also reflected in the higher bias,
std and RMSE values observed in Fig. 3 and Fig. 4. ADEPT’s
superior accuracy and precision may be partly attributed to
its capacity to accurately estimate the phase parameters, as
demonstrated in Fig. 5.

The current work has some limitations that will be ad-
dressed in future work. First of all, ADEPT still has to be
compared with other state of the art methods and evaluated
in in-vivo data. Furthermore, ADEPT can be extended to
include more complex phase models than the linear model
considered in this work. Finally, the intra-scan modulated
acquisition framework of ADEPT has many degrees of
freedom which can be but have not yet been fully exploited
by applying statistical experiment design, allowing to find
the settings that maximize the precision of the estimated
diffusion parameters [17].

Fig. 2. Estimated MD (top) and FA (bottom) maps for a dataset with
SNR = 20. The ground truth values (left) are shown along with the SENSE-
re (middle) and ADEPT (right) results.
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Fig. 3. Bias (left), standard deviation (middle) and RMSE (right) maps of
MD (A), and FA (B) estimated with SENSE-re and ADEPT from datasets
with SNR = 20.

Fig. 4. Spatial averages of the absolute bias (left), standard deviation
(middle) and RMSE (right) of MD (top) and FA (bottom) estimated with
ADEPT and SENSE-re for multiple SNR levels.

Fig. 5. RMSE of the estimated phase parameters θ0 (left), θ1 (middle) and
θ2 (right) of ADEPT and SENSE-re. The RMSE values, averaged across
the shots, are shown for multiple SNR levels.

VI. CONCLUSION
We presented ADEPT, a framework that allows robust

estimation of diffusion parameters in multi-shot EPI studies,
while enabling accelerated imaging. Using joint information
of all the differently diffusion weighted shots and simulta-
neously estimating phase map parameters, ADEPT allows
for more accurate and precise estimation of the diffusion
parameters compared to more conventional image space
methods, as was shown by extensive simulation experiments.
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