
  

  

Abstract— Fundus Retinal imaging is an easy-to-acquire 
modality typically used for monitoring eye health. Current 
evidence indicates that the retina, and its vasculature in 
particular, is associated with other disease processes making it 
an ideal candidate for biomarker discovery. The development of 
these biomarkers has typically relied on predefined 
measurements, which makes the development process slow. 
Recently, representation learning algorithms such as general 
purpose convolutional neural networks or vasculature 
embeddings have been proposed as an approach to learn 
imaging biomarkers directly from the data, hence greatly 
speeding up their discovery. In this work, we compare and 
contrast different state-of-the-art retina biomarker discovery 
methods to identify signs of past stroke in the retinas of a curated 
patient cohort of 2,472 subjects from the UK Biobank dataset. 
We investigate two convolutional neural networks previously 
used in retina biomarker discovery and directly trained on the 
stroke outcome, and an extension of the vasculature embedding 
approach which infers its feature representation from the 
vasculature and combines the information of retinal images 
from both eyes.  

In our experiments, we show that the pipeline based on 
vasculature embeddings has comparable or better performance 
than other methods with a much more compact feature 
representation and ease of training. 
 

Clinical Relevance—This study compares and contrasts three 
retinal biomarker discovery strategies, using a curated dataset 
of subject evidence, for the analysis of the retina as a proxy in 
the assessment of clinical outcomes, such as stroke risk. 

I. INTRODUCTION 

Annually, 15 million people worldwide suffer from stroke; 
of these, 10 million die or are left permanently disabled [1]. In 
the United States, a stroke occurs every 40 seconds, and it is 
the primary cause of long-term disability. In addition to 
clinical assessment, the primary diagnostic modality to assess 
stroke is non-contrast head computed tomography (CT); 
additional modalities might be acquired for further assessment.  

Fundus retinal imaging is a non-invasive visualization of 
microcirculation and  has been indicated as a potential marker 
of cerebrovascular diseases including stroke [2]. Close 
embryologic connection between the retina and the brain 
suggest that neurological disease processes have close 
homology with retinal tissue changes [3]. Retinal artery or 
retinal vein occlusions and stroke are acute manifestations of 
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vascular disease in the retina and the brain. Simultaneous 
blood clots in retinal and brain circulations are common, most 
likely due to a shared cardiac or large vessel source [2]. 

Previous work on measurement of retinal characteristics 
has often relied on predefined measurements such as fractal 
analysis, vessel width, vessel tortuosity, artery to vein ratio 
[4]–[7]. However, these predefined measurements, while 
demonstrating statistical associations, cannot be easily tuned 
to specific clinical outcomes, which limits their use as 
biomarkers especially when studying new disease types. In 
recent years, representation learning algorithms such as 
general purpose convolutional neural networks (CNNs) have 
been proposed as an approach to learn imaging biomarkers 
directly from the data, drastically increasing the speed of 
development of disease specific biomarkers. These approaches 
are not a panacea, as they require a non-negligible amount of 
training data and at the same time they need to be validated 
with data that controls for the many confounding factors that 
might have led to “shortcut learning” [8], a common issue in 
medical imaging and deep learning, that would lead non-
generalizable biomarkers.  

Poplin et al. [9] used an Inception-V3 CNN trained on two 
large public datasets (120,090 images from UK Biobank and 
237,233 images from EyePACS) for predicting cardiovascular 
risk factors using retinal imaging achieving AUC=0.97 in the 
prediction of gender and AUC=0.70 for major adverse 
cardiovascular events. Lim et al. [10] focused on a similar 
problem as ours achieving AUC=0.98, however, as 
highlighted by the authors themselves, their dataset suffered 
from significant confounding factors including environment-
differentiating features that helped to distinguish between 
stroke and control images that could have led to “shortcut 
learning” [8]. Giancardo et al. [11] proposed a CNN-based 
vasculature embeddings approach. Instead of being trained 
directly on an outcome, it first generates an intermediate 
compact vector representation from the vasculature.  However, 
their approach was only tested for image retrieval and diabetic 
retinopathy classification.  

In this work, we present an extension of the feature 
embedding method that combines information from the left 
and right eye coupled with a tree-based gradient boosting 
algorithm. We compare this approach with [9] and [10] on the 
challenging stroke biomarker discovery problem. To do so, we 
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have created a curated cohort of patients with stroke history 
and suitable controls from the UK Biobank biomedical dataset 
[12]. The whole dataset went through a quality assessment 
algorithm and our selection of patients was aimed at 
controlling confounders and comorbidities present in data. 
Fundus retinal imaging was obtained for each patient and used 
to optimize a set of techniques on the prediction of stroke. 

Finally, in order to facilitate retinal biomarker research 
discovery, we will return the precomputed vasculature 
embeddings described in this paper to the UK Biobank 
organizers. 

II. METHODS 

A. Study Dataset and Patient Matching 
Fundus retinal images were obtained from the UK 

Biobank, a large-scale biomedical database and research 
resource that includes fundus images from over 80,000 
participants. Based on ICD10 codes, we identified patients 
diagnosed with stroke, as well as controls [13]. Patients were 
matched based on age, gender, ethnicity, and cardiovascular 
risk factors including diabetes, hypertension, obesity. Our 
selection of stroke and control patients was performed to 
control for potential confounders in the analysis. A nearest 
neighbors’ algorithm was used to match each stroke patient 
meeting inclusion criteria with the five closest control patients 
in terms of confounders and comorbidities. 

Images from the identified patients were assessed with an 
automatic image quality algorithm based on an extension of 
Elliptical Local Vasculature Density Features (ELVD) [14] to 
determine inclusion in this study. This algorithm assesses 
retinal image quality based on the morphology of vascular 
structure. Vessel segmentations required by the algorithm 
were obtained through the segmentation algorithm employed 
to obtain the vasculature embeddings. To extract local vessel 
density, we employed a rectangular window as opposed to the 
polar window in the original implementation. 

Only patients with imaging regarded as good quality by the 
ELVD algorithm were considered. The final number of 
patients who had stroke and suitable controls was 412 and 
2060, respectively. 
Table 1. Dataset Statistics 

 
Whole Dataset Age Restricted  

Control 
Group 

Stroke 
Group 

Control 
Group 

Stroke 
Group 

Number of Subjects 2,060 412 1,001 199 
Mean Age (std) 58.4 (7.5) 58.4 (7.5) 64.7 (2.5) 64.7 (2.5) 
Female (%) 45% 46% 45% 47% 
Congestive Heart 
failure (%) 21% 24% 29% 31% 

Hypertension (%) 69% 58% 74% 64% 
Diabetes (%) 14% 16% 14% 17% 
Vascular disease (%) 21% 26% 28% 32% 
Chronic Kidney 
Disease (%) 1% 3% 2% 4% 

Myocardial 
infarction (%) 19% 23% 26% 30% 

Smoking (%) 15% 17% 10% 12% 
Obesity (%) 7% 9% 6% 11% 
Dyslipidemia (%) 36% 39% 42% 43% 
Atrial Fibrillation (%) 12% 15% 17% 23% 

 
Figure 1. Vasculature Embeddings Learning Algorithm 

C. Vasculature Embeddings & LightGBM 
A compressed vector representative of retinal vasculature was 
obtained using an extension of the technique reported by 
Giancardo et al. [11]. In summary, this approach uses a U-
shaped neural network but with the convolutional layers at the 
last level of abstraction replaced by fully connected layers. 
The full description of the network is available in the original 
paper. The algorithm was trained end-to-end to segment 
retinal vasculature. By constraining the information passing 
through the fully connected layers, the models learn an 
implicit compact representation of the vasculature. 
Embeddings were computed only in areas where vessels were 
present determined by the output segmentation at the end of 
the model. Equation 1 shows the combination of image 
patches to generate the embeddings.  
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Where 𝑛 is the number of patches,  𝑎! ∈ ℝ#$,  representing 
the local vessel embedding for a single patch, 𝑓&'( represents 
the median and  𝑓)*+  the interquartile range for emb ∈ ℝ$-. 
As opposed to the original approach, we only included 
patches in set A that had probability > 0.5 to be a vessel, this 
allowed us to compute comparable feature embeddings in 
subjects with various degree of vessels visible. The 
probability was computed by evaluating the vasculature 
segmentation automatically generated while computing the 
embeddings.  In addition, the final embedding representing a 
single patient was obtained by calculating the product of the 
embeddings for left and right retinas as embleft	⨀	embright	 ∈
ℝ$-. 

Fig. 1 graphically shows how the vasculature embeddings 
computation process works by learning to segment a fundus 
image as a pretext task. In this study, we pre-trained the 
embeddings on multiple publicly available datasets that 
included a manually drawn segmentation: DRIVE (40 
images) [15], STARE (400) [16], ARIA (143) [17], 
CHASEDB1 (28) [18], and (45) HRF [19]. From these 
datasets, a total of 217 images were used for the first training 
phase of the embeddings, the remaining images were used to 
control for overfitting. Note that none of these images were 
part of the UK Biobank dataset nor did they have any specific 
information about the stroke status of the subject imaged. 

The vasculature embeddings were finally tuned to the 
stroke outcome using the light gradient boosting method 
(LGBM) [20]. This algorithm uses gradient boosting decision 
trees along with efficient sampling of instances and effective 
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reduction of features. Our implementation was trained with a 
learning rate equal to 5e-2 and early stopping for 30 rounds if 
binary cross-entropy loss did not decrease for validation data. 
The number of leaves for each trainer was experimentally set 
to 21. 

D. Image Preprocessing 
To be processed by the models, retinal images were 

converted to a standard format suitable for computations. First, 
the images were processed to a single channel by removing the 
blue and red color channels leaving the green channel only. 
Then, the circular section of the images corresponding to the 
retina was identified and cropped. The resulting array was 
zero-padded and resized to a 512x512 resolution. Textures 
were normalized using a squared median filter with kernel 
width of 15 pixels. To match the three-color channels expected 
by the algorithms, the resulting single channel image was 
concatenated with itself three times. Signal intensities were 
normalized to the -128 to 128 range expected by VGG19 and 
the -1 to 1 range for Inception-v3. 

E. Convolutional Neural Networks 
To compare our technique, we applied two stroke detection 

methods using retinal imaging. These algorithms are based on 
convolutional neural networks (CNNs). One of the methods 
proposed by Lim et al. uses VGG19 pretrained on ImageNet 
as base model with a modified output layer [10]. The other 
method introduced by Poplin et al. has Inception-v3 as base 
model with architectural modifications for the prediction of 
cardiovascular risk factors from retinal imaging [9]. Both 
approaches were trained independently on the fundus imaging 
dataset available for this study. Convolutional layers were 
frozen for both models. For each model, a classifier was 
trained using the “bottleneck” features available at the last 
layer of the base model. In both cases, the classifier was 
integrated by two hidden layers of 1024 units each and an 
output layer with sigmoid activation. Each model ensemble 
was trained for 100 epochs, using Adam as the optimizer with 
the AMSGrad variation [21]. The learning rate was set to 1e-
5. At the end of each epoch, the models’ performance on 
validation data was evaluated; weights for the version that 
obtained lowest validation loss were saved. 

F. Evaluation 
To prove the effectiveness of our technique, we processed 

the available data with the vasculature embedding gradient 
boosting method and the CNNs. We evaluated stroke 
detection by calculating the area under the ROC curve 
(AuROC) for the predicted probability scores by each method 
versus ground truth labels. Cross validation was used to 
evaluate each of the algorithms considered. For the CNNs, 5-
fold cross validation was conducted. For LGBM, 50-fold 
cross validation was used. At each fold the data was split into 
training, validation, and testing sets. Algorithms and 
evaluations presented were implemented using Python, and 
TensorFlow and Microsoft’s LightGBM libraries. 

Regarding the computation time for the algorithms, 
training and evaluation for LGBM with the vasculature 
embeddings took less than a minute. For the CNN models, 
training time was significantly longer spawning some hours, 
inference time is in the range of a few milliseconds for one 
patient. 

III. RESULTS 

Stroke detection performance based on AuROC for 
gradient boosting and the CNNs is shown in Figure 2. The 
AuROC for LGBM is 0.626. For the VGG19 model, AuROC 
was 0.548. For the Inception-v3 model, AuROC was 0.499. It 
is observed that stroke detection by gradient boosting is 
superior to that of the other techniques. Figure 3 shows stroke 
detection for the age restricted dataset. AuROC for LGBM, 
VGG19, and Inception-v3 are 0.674, 0.714, and 0.512. For the 
restricted cohort, VGG19 performed better than the other two 
methods. 
 

 

Figure 2. AuROC Curve Complete Dataset 

   
Figure 3. AuROC Curve Age Restricted Dataset 

IV. DISCUSSION AND CONCLUSION 

This study introduced a technique for detecting stroke 
through retinal imaging using vasculature embeddings and 
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gradient boosting. We evaluated this method on a large 
biomedical dataset and compared it to detection techniques 
based on convolutional neural networks. Obtained results 
show that our proposed methodology is fit for the detection of 
stroke, suggesting that the embeddings used are 
representative of retinal microvasculature. Compared to the 
CNN methods considered our methodology is efficient both 
in compression and computation time. Our compressed 
representation was a vector of length=256. In the CNN 
models the last max pooling layer was flattened resulting in 
vectors of length ~400,000 for Inception-v3 and ~130,000 for 
VGG19. This indicates the efficiency of our model as fewer 
parameters are needed to reach comparable performance. An 
alternative approach to be considered in future work is to 
replace the CNNs’ last max pooling layer for a global average 
pooling layer. This can reduce the number of parameters in 
the classification model improving computational efficiency. 
It was observed that the accuracy in stroke detection reached 
by Lim et al. did not replicate in our setup, probably due to 
better patient matching in their approach. The VGG19 had 
lower performance in the larger dataset evaluated; this might 
have been caused by heterogeneity in the images part of the 
dataset. For both datasets, Inception-v3 had poor stroke 
detection. One likely reason for this failure, is the higher 
dimensionality of the Inception-v3 vector after the last max 
pooling layer compared to VGG19. In addition, Inception-v3 
is a highly specialized model used in the recognition of real-
world images. Therefore, its learned filters might not extend 
well to other imaging domains when few data are available. 
While VGG19 was also pre-trained in the same task as 
Inception-v3, it is a far less specialized model given fewer 
number of layers. Therefore, the VGG19 filters might 
generalize better to tasks in different image domains. We 
expect the general-purpose CNNs’ accuracy to improve given 
a larger retinal imaging dataset specific to stroke patients. 
However, modality specific models that use proxy tasks as a 
pre-training step, such as vasculature embeddings, have 
significant advantages while developing data driven models 
to identify retina biomarkers with relatively small but curated 
dataset. In future work, we will explore such approaches for 
extracting representations of retina vasculature. 
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