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Abstract— This work takes a step towards a better biosignal
based hand gesture recognition by investigating the strate-
gies for a reliable prediction of hand joint angles. Those
strategies are especially important for medical applications
in order to achieve e.g. good acceptance of hand prostheses
among amputees. A recurrent neural network with a small
footprint is deployed to estimate the joint positions from
surface electromyography data measured at the forearm. As
the predictions are expected to be not smooth, different post
processing methods and a regularisation term for the objective
function of the network are proposed. The experiments were
conducted on publicly available databases. The results reveal
that both post processing strategies and regularisation have a
positive impact on the results with a maximal relative improve-
ment of 6.13%. On the one hand post processing strategies
introduce an additional delay, consequently, the improvement
is analysed in context of the caused delay. On the other hand
the regularisation strategy does not cause a delay and can
be adjusted easily to cope with different ground truths or
compensate for certain problems in the hand tracking.

I. INTRODUCTION

The advantages of a hand gesture recognition system based
on biosignals are multifarious. Such a system could easily
be used in mobile devices and provides an intuitive human-
machine interface that can of course be used in numerous
applications [1], [2]. One of the most obvious and probably
most important application areas are hand prosthetic and ex-
oskeletons [3], [4]. Furthermore, a hand gesture recognition
system can also be used to interact with a virtual reality or
to control exoskeletons, and in many other use cases.

In the context of this publication, we focus especially on
medical applications, because that is where the requirements
and also the benefits for the users are the greatest. In
general, the requirements on gesture recognition systems are
very similar. To allow for a satisfying user experience three
major aspects have to be covered. First, the usage has to be
intuitive for the user, meaning the amputees do not have to
learn certain muscular contraction patterns to control their
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prosthesis, but they can rather perform the natural gesture
and the system recognises it. Secondly, the response time
and the introduced delay should be unnoticeable or at least
relatively small. A delayed reaction of a human machine
interface leads to low level of acceptance among the users
as it reduces the usability significantly. Finally, performed
gestures have to be recognised robustly and accurately.

Usually, hand gesture recognition systems solve a clas-
sification problem, meaning that only a limited number of
gestures can be recognised. In recent years the number
of recognisable gestures got as high as 50 to allow for
a more intuitive control by allowing the user to choose
from a large set of gestures. With the introduction of deep
learning methods it became possible to distinguish between
this many gestures more and more reliably. In recent years
the hand crafted feature extraction as used in [5], [6], [7]
were replaced by one trained in data driven fashion. By
using small recurrent neural networks (RNNs) [8], [9], [10]
or significantly larger convolutional neural networks (CNNs)
[11], [12]. With the small RNNs, it became possible to
reduce the delay while achieving remarkable classification
accuracies even for a large number of different gestures.

Consequently, the next step to improve intuitive control
and usability of such a human machine interface – and the
aim of this work – is to replace the classical classification by
a regression scheme, meaning the system will not distinguish
between predetermined gestures but predict the angle of each
join. As a result, the user can (hopefully) move the hand
freely while the system still predicts its movement correctly.

Unsurprisingly, the tool used for the prediction is also
a network. The approaches based on rather small RNNs
achieve state-of-the-art performance, are suitable for de-
ployment on embedded systems (in contrast to the CNN
based networks with their significantly larger footprints),
and also have shown their general suitability for regression
tasks even though only voltage signals instead of join angles
were predicted [13]. Consequently, the proposed network is
inspired by those small RNNs and features just a single RNN
cell followed by one dense/fully-connected layer.

The networks predictions are expected to be rather noisy
resulting in joint angle sequences that cannot match the
smoothness of biological movements. Therefore, different
post processing strategies are introduced. One strategy
utilises a median filter while the other is based on a total-
variation approach.

Experiments were conducted on the publicly available
databases one and two of the Ninapro project [5]. Note that

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 6519



σ σ tanh σ

tanh

xt

×

× +

×
it ot

ht−1

...

ht

ct−1

ft

ct

Fig. 1. Schematic illustration of the basic principle of an LSTM cell.

the sampling frequencies of the two databases are different.
Database IX contains the corresponding joint angles needed
for the regression [14]. The predictions, the effects of the
different post processing approaches, as well as potential
weaknesses of the ground truth are discussed. The results
reveal the effect of post processing and the quality of the
predictions.

II. THE REGRESSION PROBLEM

In this work the joint angles of a hand should be regressed
given sEMG signals. As most of the potential applications
require a prediction of every joint angle for every window, a
sequence-to-sequence formulation of the problem is chosen.
This means, before processing the next window, all joint
angles for the current one have to be predicted, and for the
prediction, information of the predecessor windows can be
used. Let us assume xt ∈ RD is the D-dimensional represen-
tation (possibly the raw signal) of the window corresponding
to the current time step t. To leverage the sequential nature
of the data the regression problem is stated as follows

R : (xt ∈ RD,xt−η,xt−2η, · · · ) 7−→ yt+τ (1)

where η denotes the step size and τ the prediction offset.
In this work η is chosen to be equal to the window length
resulting in non-overlapping consecutive windows between
which no information is lost. The prediction offset τ is
set to half of the window length meaning the predictions
correspond to the end of the current window rather than
to the center. This formulation allows for the use of RNNs
and enables the regressor to try to compensate for positive
or negative time delays of the signal compared to the hand
movement.

As the human motions are assumed to be smooth, a
post processing step is introduced since the predictions
are expected to be rather noisy and not smooth. Let
L ∈ {2k + 1|k ∈ N0} be the filter length used for the median
filtering then the smoothing is given by

P : (yt−L−1
2 η,yt−L−2

2 η, . . . ,yt, . . . ,yt+L−1
2 η) 7−→ yt. (2)

Note that such a post processing step introduces an delay of
L−1
2 η samples.

III. PROPOSED NETWORK

A. Architecture
The network used in this paper features the long short-

term memory (LSTM) cell [15]. Fig. 1 illustrates the general

principle of this RNN cell. Characteristic for the LSTM cell
is its state that allows information to persist over time within
the cell. The state is updated in each time step via the forget
gate f and input gate i. Together with the so-called output
gate o the modified state is used to calculate the cells output.

In [13] a simple network has proven its suitability for
regression. Hence, in this work a network with just two
layers is used. The first layer, a LSTM cell, performs the
time variant data processing while the final fully connected
layer does the mapping necessary for the actual regression
of the different joint angles.

B. Loss Function

As objective function the Huber loss was used. It is a
combination of `1 and `2 loss:

Lδ(ŷ
j
t ,y

j
t ) =

{
1
2 (ŷ

j
t − yjt )

2, |ŷjt − yjt | ≤ δ
δ|ŷjt − yjt | − 1

2δ, otherwise
(3)

The overall loss of a training sequence is calculated by the
summation of all joints and all time steps. In the following
this sum will be referred to as the value of the loss.

C. Optimization

To train the network the well-known Adam optimizer [16]
was used. To improve the training procedure mini-batches
were used as well as dropouts.

IV. POSTPROCESSING

Since initial experiments revealed that a sequence of
predicted joint angles is not smooth even though the RNN
performed the predictions in a sequence-to-sequence manner,
a post-processing is applied. After studying the provided
ground truth two rather simple techniques were chosen: the
median filter, and a one-dimensional total variation (TV)
denoising approach [17]. Again, for simplicity, each joint
is treated independently, though with the same hyperparam-
eters.

Since the median filtering is covered in (2), in the fol-
lowing only the TV denoising step is briefly introduced. For
any discretized time signal s(n) of length N , the optimal
TV-denoised solution ŝ(n) can be found by

minimize
ŝ∈RN

1

2

N∑
n=0

(s(n)− ŝ(n))2+β

N−1∑
n=0

|ŝ(n+ 1)− ŝ(n)| ,

(4)
where β > 0 denotes the regularisation parameter. An
optimal solver can be found for the problem in (4) by
using the algorithm from [17]. The optimization problem
can require up to the entire sequence. Thus, the concept
of delay of conventional filter cannot easily be transferred
to TV denoising. However, as mentioned, the ground truth
signals appear to have a small total variation making this TV
denoising a near optimal solution for post processing.

In order to find the suitable parameters for the two
methods, a grid search is performed. In the case of the
median filter, only the filter length is varied, while in the
case of TV denoising, the hyperparameter β was varied in
the range of [10−2, 103].
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TABLE I
HYPERPARAMETERS OF THE NETWORK FOUND VIA GRID SEARCH.

δ λ Batch size State size Learning rate Dropout rate

1.0 10−6 200 128 0.0008 0.5

V. OBJECTIVE FUNCTION WITH REGULARISATION

As the TV denoising is expected to achieve the best results
in post processing, it should be investigated whether a similar
constraint can be introduced to the loss function for the
network. The advantage of such a regularisation is that unlike
the TV denoising and median filtering no additional delay is
introduced. Consequently, the Huber loss is extended by a
regularisation term

LR(δ,λ)((ŷ
j
t ,y

j
t ) = Lδ(ŷ

j
t ,y

j
t ) + λ||∇ŷjt ||1 (5)

with λ ∈ R+ being a weighting factor. The regularisation
term, called estimated gradient regularisation (EGR), should
penalise rapid unnatural motion predictions. In this study the
norm of the gradient was approximated by

||∇ŷjt ||1 = ||ŷjt−1 − ŷjt+1||1. (6)

Note that the approximation of the gradient is different form
those in (4). For the regularisation the central difference
quotient was used as the gradient should be estimated for
a sampled value and not between two sampled values.

VI. EXPERIMENTS

The experiments were conducted using dabases DB I and
DB II of the ninapro project [5] whereas the ground truth
could be found in DB IX [14]. The raw EMG data were fed
into the network. In case of DB I the window length and
the hop was set to 100ms while for DB II 5ms were used.
The prediction offset τ was set to half of the window size to
avoid delays. The network’s parameters, found via a quick
grid search, are shown in Table I. In training, sequences with
a fixed length of 1 s were used and the network was optimised
for 20 epochs. As an error measure the mean absolute error
(MAE) was used. If not stated otherwise the reported results
are averaged along all joints and across all subjects of one
database.

A. Results

The naive network trained with the Huber loss (3) can
predict the joint angles with an average MAE error of 6.93◦

and 5.72◦ for DB I and DB II, respectively.
In Table II the obtained results for the various smoothing

techniques for DB I are shown. The network optimised
with the EGR achieves a slightly better MAE compared
to the default one that does not use any post-processing or
regularisation. The median filtering on the other hand leads
to an improved MAE at the cost of an additional delay of
700 ms when aiming for the biggest improvement. Also, on
DB II the usage of EGR outperforms the default method
without causing additional delay as can be seen in Table III.
Here, as well, the median filtering leads to the best result

TABLE II
RESULTS OF THE PROPOSED SMOOTHING TECHNIQUES FOR DB1.

Default Median filter TV denoising EGR

MAE in degrees 6.93° 6.66° 6.56° 6.87°
Rel. MAE decrease – 4.05% 5.64% 0.87%
Additional delay 0ms 700ms – 0ms

TABLE III
RESULTS OF THE PROPOSED SMOOTHING TECHNIQUES FOR DB2.

Default Median filter TV denoising EGR

MAE in degrees 5.72° 5.41° 5.39° 5.53°
Rel. MAE decrease – 5.73% 6.12% 3.43%
Additional delay 0ms 625ms – 0ms

at the cost of an additional delay of 625 ms. As expected
the TV denoising leads to the best result for both databases
(see Tables II and III). However, as mentioned, the results
cannot be compared with those for the other methods as the
delay is uncertain, making the TV denoising impractical for
real world applications. Note, to the best of our knowledge
there are no other publications to compare with. But as the
MAE is well below 7◦ which corresponds to a displacement
of just a couple of millimeters depending on hand size,
the experiments let us conclude that regressing the hand
movement is possible even with decent accuracy.

For both databases in Fig. 2 the relation between MAE and
delay is illustrated. To put things in perspective the results
for the default network, the EGR, and TV denoising are
added as a constant line. The general behaviour is similar for
both databases. Up to a delay of 700ms, the more precises
regression result can be trade of against an increased delay.
Beyond the 700ms mark the results decrease again. This
makes sense as after nearly three quarters of a second,
the hand movement has changed significantly. The EGR
provides the better results if a delay lower than about 100
ms and 200 ms is allowed for DB I and DB II, respectively.
Consequently, as in real-world applications the acceptable
delays are rather small, EGR appears to be the proper choice
for such use cases.

To illustrate the effects of the different smoothing methods
in Fig. 3 the true joint angles as well as the predicted
joint angles using various methods over time are shown,
exemplary for one randomly chosen sensor. As expected,
the predicted movement of default network is rather noisy.
Both the median post processing and the EGR leads to
significantly smoother prediction curves that appear to be
closer to a natural movement. The TV denoising leads to
predictions with characteristics close to those of the ground
truth. In a nutshell, a post processing can (obviously) alter
the prediction but also a regularisation term added to the
objected function can be used to train the network.

B. Ground Truth – Bringing it in perspective

With the results in mind, a brief discussion of the ground
truth is necessary. The general shape of the curve is not

6521



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Delay in seconds

6.5

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95

7

M
A

E
 i
n

 d
e

g
re

e
s

Default

Median

EGR

TV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Delay in seconds

5.25

5.3

5.35

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

M
A

E
 i
n

 d
e

g
re

e
s

Default

Median

EGR

TV

(a) (b)
Fig. 2. MAE on test data over the corresponding delay. The MAE curves for DB I are displayed in (a), for DB II in (b). As the default and median have
no additional delay and the delay of TV cannot be determined a priori, the results are plotted as horizontal lines.

0 5 10 15 20 25
Time in seconds

-5

0

5

10

15

20

25

30

35

40

45

Jo
in

t a
ng

le
 in

 d
eg

re
es

Ground truth
Default
Median
EGR
TV

Fig. 3. Exemplary illustration of ground truth and corresponding predictions (using best parameters for each method) from DB II. Note that the results
of median are shown without their offsets.

what the authors of this paper would expect. Intuitively,
the changes in a natural movement are not sudden so that
the curve should be smooth and free of rapid changes in
joint angles. It would lead too far to reason about why
the ground truth has its characteristics. But nevertheless
by adjusting the methods used for regularisation and post
processing to the characteristics of alternative hand tracking
data should be possible. As well, it can be assumed that the
prediction quality would improve as there is potentially a
stronger correlation between the EMG signal and the data
to be regressed. Also a wisely chosen regularisation or post
processing might even be capable of compensating some of
the shortcommings of the hand gesture recognition/ground
truth.

VII. CONCLUSION

Generally, it is possible to estimate the joint angles given
sEMG data surprisingly well when using simple RNN.

With an average error less than 7◦ the positional error is,
depending on the individual hand size, just a few millimeters.
With post processing, especially with the TV denoising, even
lower MAEs can be achieved at the cost of a significant
delay. In contrast the regularisation added to the networks’
loss function does not add a delay but still improves the
predictions. Like the post processing, the regularisation can
be varied in order to achieve a certain behaviour of the
output. As this work focused mostly on minimising the error
and considered the naturalness of movement only marginal,
future research could focus on that in order to improve results
and compensates for problems with ground truth and hand
tracking.
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