
  

 
 

Abstract— Many automated sleep staging studies have used 

deep learning approaches, and a growing number of them have 

used multimodal data to improve their classification 

performance. However, few studies using multimodal data have 

provided model explainability. Some have used traditional 

ablation approaches that “zero out” a modality. However, the 

samples that result from this ablation are unlikely to be found in 

real electroencephalography (EEG) data, which could adversely 

affect the importance estimates that result. Here, we train a 

convolutional neural network for sleep stage classification with 

EEG, electrooculograms (EOG), and electromyograms (EMG) 

and propose an ablation approach that replaces each modality 

with values that approximate the line-related noise commonly 

found in electrophysiology data. The relative importance that we 

identify for each modality is consistent with sleep staging 

guidelines, with EEG being important for most sleep stages and 

EOG being important for Rapid Eye Movement (REM) and non-

REM stages. EMG showed low relative importance across 

classes. A comparison of our approach with a “zero out” ablation 

approach indicates that while the importance results are 

consistent for the most part, our method accentuates the 

importance of modalities to the model for the classification of 

some stages like REM (p < 0.05). These results suggest that a 

careful, domain-specific selection of an ablation approach may 

provide a clearer indicator of modality importance. Further, this 

study provides guidance for future research on using 

explainability methods with multimodal electrophysiology data. 

 
Clinical Relevance— While explainability is helpful for 

clinical machine learning classifiers, it is important to consider 

how explainability methods interact with clinical data, a domain 

for which they were not originally designed. 

I. INTRODUCTION 

Many methods have been developed for automated sleep 
staging in recent years. Most use electroencephalograms 
(EEG) [1] or electrooculograms (EOG) [2], and only a few 
utilize multimodal data [3], [4]. Clinicians typically use 
multimodal data when scoring sleep stages. As such, the use 
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of multimodal data, like EEG, EOG, and electromyograms 
(EMG) could provide insights that could not be gained from 
unimodal data alone. Multimodal data facilitates more intricate 
recognition of human activity [4]. Moreover, while many 
studies use deep learning (DL) for automated sleep staging, 
most do not give insight into the inner mechanisms of their 
classifiers [5]. The black-box nature of DL models is 
problematic for clinical implementation because they are 
difficult for clinicians to interpret. Of the papers that offer 
explainability, most involve EEG [6]–[8]. Studies on 
multimodal data, with a few exceptions [5], [6], do not use 
explainability methods or provided insight into the importance 
of the modalities that they analyze. In this study, we present a 
novel explainability approach that enables us to identify the 
importance of different modalities to a classifier and that is 
better suited to explaining multimodal electrophysiology (EP) 
classifiers than preexisting approaches. 

Several studies use explainable artificial intelligence 
methods to examine modality importance [9], [10]. These 
studies use methods like layer-wise relevance propagation 
(LRP) and ablation. Ablation involves the removal of each 
modality and the calculation of the effect that its removal has 
upon the classifier performance. Like similar methods that 
perturb data, ablation methods can create samples that are 
outside the data distribution upon which the classifier is trained 
and potentially give an inadequate explanation [11]. While 
ablation approaches are simple and intuitive, it is important to 
consider the potential problems that can arise when they are 
applied in domains, like electrophysiology classification, for 
which they were not originally designed. Existing 
multimodality studies that use ablation replace the values of 
each modality with zeroes [9], [10]. This “zeroing out” of a 
modality may not force a sample outside the data distribution 
if an appropriate data normalization method (i.e., z-scoring) is 
used. However, the resulting samples are, nevertheless, 
unrealistic and do not align with how real-life samples appear. 

In this study, we train a 1-dimensional (1D) convolutional 
neural network (CNN) for automated sleep staging with 
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multimodal electrophysiology data. Then to address the 
previously described problem of explainability, we present a 
novel ablation-based explainability method that finds the 
relative importance of each modality to the classification of 
each sleep stage. Our ablation approach seeks to ablate each 
modality in a way that creates new samples that (1) a classifier 
might encounter during a clinical implementation and (2) that 
would not be as distinct from the original data as “zeroed out” 
samples. We do this by replacing each modality with a 
sinusoid and Gaussian noise that mimics the line-related noise 
that is commonly found in electrophysiology recordings. To 
examine how our method relates to existing approaches, we 
compare the results of our explainability method with that of 
the traditional “zeroing out” ablation approach. 

II. METHODS 

Here we describe our study approach. We train a 1D CNN 

for sleep stage classification with multimodal data and output 

explanations for insight into the modalities critical to 

classifying each stage using our novel ablation method. We 

then implement an existing ablation method and use statistical 

tests to compare the two methods. 

A. Description of Data 

We use sleep telemetry data from the PhysioNet [12] 
Sleep-EDF Database [13]. The data was not collected 
specifically for our study, and no one on our team had access 
to subject identifiers. As such, our study was not considered 
human subjects research and did not require Institutional 
Review Board approval. The dataset consists of 44 full night 
(approximately 9 hour) recordings collected from 22 subjects 
with primary onset insomnia. Each subject has two recordings: 
one following placebo administration and one following 
temazepam administration. The data has three modalities: 
EEG, EOG, and EMG. All modalities have a sampling rate of 
100 Hertz (Hz). For EEG, we use the FPz-Cz electrode. A 
marker recorded at 1 Hz indicates whether the sleep telemetry 
system operated correctly, and a polysomnogram consisting of 
Awake, Movement, rapid eye movement (REM), Non-REM 1 
(NREM1), NREM2, NREM3, and NREM4 is also included. 

B. Description of Preprocessing 

We divide the data into non-overlapping, 30-second 
segments and extract labels from the polysomnograms. 
NREM3 and NREM4 stages are combined into a single 
NREM3 stage [14] and Movement samples are discarded. We 
discard all samples that coincide with a recording error. We 
apply z-score normalization to each modality within each 

recording. After segmentation, the dataset has 42,218 samples. 
Approximately, 9.97% (4,213 samples), 8.53% (3,603 
samples), 46.8% (19,755 samples), 14.92% (6,298 samples), 
and 19.78% (8,349 samples) belong to the Awake, NREM1, 
NREM2, NREM3, and REM classes, respectively. 

C. Convolutional Neural Network 

We adapt a CNN architecture that was first developed for 

EEG sleep stage classification [15]. Similar architectures 

have been used in previous studies [8]. The architecture is 

shown in Figure 1, and we implement it in Tensorflow and 

Keras. We use a 1D-CNN because CNNs extract relevant 

features from time-series, and sleep EP data has many 

relevant features (e.g., EEG frequency bands, EMG spikes). 

When training the model, we use 10-fold cross-validation in 

which 17, 2, and 3 subjects in each fold are randomly assigned 

to training, validation, and test groups, respectively. While 

training the classifier, we use categorical cross entropy loss 

and weight the loss for each class to account for class 

imbalances. We use the Adam optimizer [16] with an adaptive 

learning rate that decreases after every 5 epochs with no 

increase in validation accuracy. The optimizer has an initial 

learning rate of 0.001. During testing of each fold, we use the 

model weights from the epoch with the best validation 

accuracy. To account for class imbalances when assessing test 

performance, we calculate the precision, recall, and F1 score 

for each class in each fold. We then calculate their mean and 

standard deviation (SD) across all folds. 

D. Ablation-based Global Explainability 

We apply an ablation approach for insight into the 

importance of each modality to the identification of each sleep 

stage. Instead of zeroing out each modality, we replace them 

with values that might be expected in EP data. Line-related 

noise often appears in EP data at around 50 Hz or 60 Hz as a 

result of the presence of power lines, lights, and other 

electronics near recording devices, and when an electrode is 

not working properly, it is common to find only line-related 

noise in that particular channel. For a sampling rate of 100 

Hz, aliased 60 Hz noise should appear at around 40 Hz. As 

such, for our study, we replace each modality with a 

combination of a 40 Hz sinusoid with an amplitude of 0.1 and 

Gaussian noise with a mean of 0 and SD of 0.1. Before 

ablation, we measure the weighted F1 score across all classes 

and the F1 scores for each individual class. We then ablate 

each modality and calculate the resulting change in 

performance (Original F1 – New F1). We perform the 

 
 

 

Figure 1. CNN Architecture. In the repeated layer i) of the diagram there are 6 1D convolutional (conv1d) layers. The first two conv1d layers have 16 
filters with a kernel size of 5 followed by a max pooling layer with a pool size of 2 and a spatial dropout layer with a rate of 0.01. The second two conv1d 

layers (in i) had 32 filters with a kernel size of 3, followed by a max pooling layer with a pool size of 2 and a spatial dropout layer with a rate of 0.01. The 

third pair of conv1d layers (in i) have 32 filters with a kernel size of 3 followed by max pooling with a pool size of 2 and spatial dropout with a rate of 0.01. 
The last two conv1d layers (in ii) have 256 filters with a filter size of 3 followed by global max pooling and dropout with a rate of 0.01. The first dense 

layer has 64 nodes with dropout layer with a rate of 0.1. The second dense layer has 64 nodes with a dropout layer with a rate of 0.05. The last dense layer 

has 5 nodes. Layers with an “R” or an “S” indicate that they are followed by a ReLU or Softmax activation function, respectively. 
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ablation for each fold individually. For a comparison, we use 

a “zeroing-out” ablation approach [9] and perform two-tailed 

t-tests to compare the change in F1 associated with each class 

and modality for the two methods. 

III. RESULTS AND DISCUSSION 

In this section, we discuss the model performance and the 
insights gained by comparing the ablation methods. 

A.  Model Performance Results 

Table 1 shows the test performance of the model across all 
folds. The classification of NREM1 samples obtains the lowest 
level of performance across all metrics, which is unsurprising 
given that the NREM1 stage is the smallest class. Although the 
Awake and NREM1 classes have a comparable number of 
samples, the model obtains much higher performance for 
Awake. Additionally, the classifier obtains higher precision 
for the Awake class than all other classes except for NREM2, 
higher recall than all other classes except for NREM3, and a 
higher F1 score than all other classes except for NREM2. This 
makes sense given that EEG, EOG, and EMG Awake activity 
is very different from NREM activity and that EMG Awake 
activity is very different from EMG REM activity [14]. 
Additionally, the model obtains highest precision and F1 
scores for the NREM2 class, which is reasonable given that 
nearly half of the dataset is NREM2. 

B. Ablation-based Explainability Results 

Figure 2 shows the explainability results for each method, 
along with the results of the statistical analysis. Panel A shows 

the change in F1 across all classes, and Panels B through F 
show the change in F1 for each individual class. For the line 
noise-related ablation analysis with the F1 score calculated for 
all classes, EEG is the most important modality by far, with a 
median reduction in F1 of nearly 60% following the ablation 
of EEG. This change in F1 for all classes is skewed by the 
NREM2 and NREM3 classes. For the NREM2, NREM 3, and 
Awake classes, EEG is by far the most important modality 
while EOG and EMG have relatively little effect. EOG and 
EMG have larger effects upon the F1 score for the NREM1 
and REM classes. For the NREM1 class, EEG and EOG have 
comparable effects upon the F1 score, though EEG has a 
slightly higher effect. Interestingly, the ablation of EMG for 
the NREM1 class seems to have a beneficial effect, increasing 
the F1 score by as much as 6-7%. For the REM class, both 
EEG and EOG have a significant effect upon the F1 score, 
though EEG has a markedly larger effect. Additionally, for the 
REM class, EMG has an effect upon the F1 score as high as 
15-16%. Given that our architecture was originally designed 
for EEG classification, it is possible that it did not effectively 
extract EMG features. This could explain the relatively low 
importance of EMG to the model. 

The results of zeroing out each modality are highly similar to 
the results of applying line-related noise ablation. Most pairs 
of F1 ablation scores do not have a significant difference 
between them. However, when including all classes, EMG 
importance is significantly different between ablation methods 
(p < 0.01). For individual classes, the EEG of the Awake class 
(p < 0.05) and the EMG of the NREM2 class (p < 0.05) have 

 
 

 
Figure 2. Results for Explainability Methods and Statistical Analysis. Panel A shows the explainability results across all classes, and Panels B through 

F show the results for individual classes. Blue, yellow, and red bars show the results for EEG, EOG, and EMG ablation, respectively. The leftmost of 

each pair of boxes shows the results for our ablation approach, and the rightmost shows the results for zeroing out each modality. The y-axes show the 
percent change in F1 following ablation, where positive and negative changes indicate decreases and increases in the F1 score, respectively. Some pairs 

of boxes are accompanied by *, **, or ***, which correspond to a two-tailed t-test p-value less than 0.05, 0.01, and 0.001, respectively. 

 

TABLE I.  CLASSIFICATION PERFORMANCE RESULTS 

 Awake NREM1 NREM2 NREM3 REM 

Precision 72.25±07.12 36.20±03.98 79.35±03.92 56.78±18.35 69.04±07.14 

Recall 70.90±07.02 46.28±13.52 68.71±08.51 78.22±10.24 63.26±06.69 

F1 71.25±05.15 39.86±07.19 73.28±04.76 64.15±15.25 65.92±06.28 
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significant results. Interestingly, all modalities have significant 
differences for the REM category (p < 0.05). In general, when 
a significant difference exists between importance assigned to 
a modality by the two explainability methods, our ablation 
method seems to give greater importance to the modality. This 
may indicate that our approach accentuates the importance of 
some modalities, which could be attributed to its use of 
ablation values that are more similar to real data. 

The results of both methods generally fit with sleep scoring 
guidelines [14]. It is expected that EEG would be most 
important given that EEG varies significantly between NREM, 
Awake, and REM stages [14]. While relying upon EEG would 
enable the classifier to obtain good differentiation between 
Awake/REM and NREM, relying upon EEG may not help 
with classification between Awake and REM to the same 
degree. It would be logical for EMG to be important for 
classifying Awake and REM samples, as more movement 
might be expected in Awake than in NREM and as REM EMG 
activity would be much less than Awake and NREM activity 
[14]. It is interesting that EEG and EOG have comparable 
importance to NREM1. Given that the classifier obtains lowest 
performance for the NREM1 class, it may inappropriately rely 
upon EOG for identifying NREM1 samples. 

D. Future Work 

Examining model architectures that might better extract 
EMG features could be beneficial. While our explainability 
results fit with sleep scoring guidelines, suggesting the broader 
generalizability of the classifier, our explainability could 
potentially be improved. We seek to provide an alternative to 
traditional ablation approaches that zero out a feature by 
instead replacing the modalities with values similar to artifacts 
that naturally occur in EP recordings. When we approximate 
line-related noise, we have three parameters: the amplitude of 
the sinusoid and the mean and SD of the Gaussian noise. It is 
possible that using other parameter values might improve 
explanations. Also, exploring explainability methods that do 
not require modifying samples could improve explanations.  

A. Conclusion 

In this study, we train a classifier for multimodal sleep stage 

classification. We further propose a novel ablation-based 

approach that provides more realistic ablated samples than 

methods that simply zero out a particular modality. A 

comparison of our method with the traditional ablation 

approach indicates that the importance values are comparable 

with the exception of a few instances in which our method 

seems to accentuate the importance of some modalities. More 

broadly, our work has implications for ablation-based 

explainability in other data types. Specifically, it suggests that 

more careful consideration of how features are ablated in light 

of their domain may provide increases in importance metrics 

and clarify the relative importance of features. 
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