
  

 

Abstract— The objective of our study was to demonstrate how 

the intact human hand can be used as a benchmark for 

electromyogram (EMG)-based myoelectric control of robotic 

interfaces (e.g., myoelectric prostheses). Using the intact human 

hand as a gold standard for control algorithms is attractive 

because able-bodied participants are widely available, have 

stereotypical movements, and possess highly refined motor 

control. We compared within-subjects performance of a real-

time virtual posture-matching task between a musculoskeletal 

model-based EMG controller (model trials) and the human hand 

(goniometer trials). Goniometer trials had lower (i.e., better) 

normalized path length (2.0±1.6) and task duration (3.3±3.4 sec) 

than model trials (4.1±4.3 and 12.3±10.7 sec, respectively; 

p<0.0001). Though, qualitatively, actual (measured by 

goniometers) and virtual joint angles assumed similar relative 

postures during model trials, there was a constant offset between 

them. Additionally, joint angles were more variable during 

model trials than goniometer trials. The results quantified the 

extent to which task performance and movement characteristics 

were not as good with the EMG controller (in this case, the 

musculoskeletal model-based controller) as with the gold-

standard intact human hand. How EMG controllers compare 

with intact human hand control can drive and inform controller 

advancements.  

Clinical Relevance— The gold-standard intact human hand 

provides an objective way to decide which EMG control 

algorithms to translate to clinical robotic interfaces. 

I. INTRODUCTION 

Researchers have developed numerous control algorithms 
that interpret users’ movement intent from electromyograms 
(EMG) for robotic interfaces, such as myoelectric prostheses 
[e.g., 1, 2]. Ideally, the best-performing algorithms would be 
translated for clinical use on commercially available 
prostheses. However, objectively determining the relative 
real-time performance of myoelectric control algorithms is an 
open challenge. Currently, relative performance is determined 
by comparing algorithms directly to one another in individual 
studies [3-5]. This is problematic because each study can, 
practically, only evaluate and compare a small number of 
algorithms. Comparing among studies is problematic because 
of inter-study differences in performance metrics, algorithm 
parameters, and study design.  

Current limitations in ranking myoelectric control 
algorithms could be addressed by determining their absolute 
real-time control performance with respect to some gold 
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standard. Clinical interfaces such as myoelectric prostheses 
are intended to replace as much of the missing limb’s function 
as possible; therefore, a reasonable gold standard is the 
control performance of the intact human hand. Such a gold 
standard is attractive because able-bodied participants are 
widely available and healthy human movements, such as 
reaching and grasping [6, 7], are stereotypical across the 
population. Besides facilitating comparison, an added benefit 
of the proposed gold standard is that it would provide 
abundant data of human motor control to inform and improve 
existing and emergent control algorithms. 

To clarify, using the intact human hand as a gold standard 
does not simply mean using able-bodied subjects to test 
control algorithms, which is very common [1, 5, 8]. Rather, 
intact hand kinematics would be used to directly control the 
movements of the interface. Doing so permits the most 
intuitive control while also accounting for any effect of the 
interface itself on task performance. Tracking hand motion in 
real time is common for many virtual reality applications [9-
11] but not, to our knowledge, for comparison to myoelectric 
control algorithms.  

The objective of our study was to demonstrate use of the 
intact human hand as a benchmark for EMG-based 
myoelectric control of robotic interfaces. The algorithm we 
selected for the demonstration was based on a lumped-
parameter musculoskeletal model of the wrist and hand [2, 12]. 
During a previously developed virtual posture-matching task 
[12], subjects controlled a virtual hand using either the model-
based controller or joint angles measured directly from their 
hand using electrogoniometers. Because able-bodied subjects 
were used for both control modes (algorithm and intact hand), 
we evaluated both virtual task performance and wrist/hand 
kinematics. We expected that able-bodied subjects would have 
better task performance and smoother wrist/hand kinematics 
with goniometer-based control than with model-based control. 

II. METHODS 

A. Musculoskeletal Model-Based Controller 

We used an existing planar (i.e., two-dimensional) 
dynamic musculoskeletal model of the wrist and hand; the 
model was implemented for real-time forward dynamics 
simulation in MATLAB (Mathworks, Inc., MA, USA) to 
permit real-time control of a virtual hand on a computer 
screen [2, 12]. The model had two degrees of freedom: wrist 
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flexion/extension and metacarpophalangeal (MCP) 
flexion/extension. Additionally, there were four virtual, 
lumped-parameter, Hill-type muscles [13, 14] that did not 
have series elastic elements (i.e. tendons). The virtual muscles 
were grouped as agonist-antagonist pairs, one pair crossing 
the wrist only and the other crossing both the wrist and MCP 
joints, to mimic the arrangement of muscles with respect to 
joints in the biological limb. The model’s parameters were 
defined from a previously reported generic model whose 
parameters were averaged across customized models of 10 
healthy young adult subjects [15].  

During the real-time forward dynamics simulation, EMG 
data were processed as previously described [12]. Briefly, 
EMG signals were smoothed, rectified, enveloped, and 
normalized by the maximum values of processed EMG 
recorded during pre-experiment maximum voluntary 
contractions. Muscle activations ranged from zero (inactive) 
to one (maximally active). Muscle activations were used to 
compute muscle forces that depended on muscle length and 
velocity according to the Hill-type muscle model [14, 16]. To 
execute the real-time forward dynamics simulation, the 
muscle forces were applied to the model, and the equations of 
motion were integrated forward in time in small timesteps 

(Δt=0.001 sec) to estimate joint angles. 

B. Posture-Matching Task 

The real-time posture-matching task, implemented in 
MATLAB, required subjects to align the virtual hand with four 
target postures [12] (Figure 3). The virtual hand was as a 2-
degree-of-freedom (wrist and metacarpophalangeal (MCP) 
flexion/extension) planar stick-figure. A resting posture was 
defined to approximate the human hand’s posture when 
relaxed. The four target postures were selected to be within the 
virtual hand’s range of motion but with different combinations 
of wrist and MCP joint angles. 

In each trial, subjects were shown the four target postures 
sequentially and in a randomized order. For each target 
posture, the subject first had to align the virtual hand first with 
the resting posture, then with the target posture. The resting 
and target postures were achieved when each of the virtual 

hand’s joint angles were within ±10° and ±5°, respectively, of 
the postures for 0.5 consecutive seconds. If the subject failed 
to achieve a target posture within 60 seconds, the software 
automatically advanced to the next target posture. The subjects 
were instructed to complete each trial as quickly as possible.  

C. Experiment Set-Up 

All procedures were approved by the University of 
Tennessee Institutional Review Board (IRB). We recruited 10 
able-bodied subjects (5 female). All sensors were placed on 
each subject’s dominant hand. Four bipolar EMG surface 
electrodes (Norotrode 20, Myotronics, Inc., Kent, WA) were 
placed on the skin over four muscles, each corresponding to 
one of the four virtual muscles according to their arrangement 
with respect to the joints: extensor carpi radialis longus (wrist 
and MCP extension), extensor digitorum (wrist extension), 
flexor digitorum (wrist and MCP flexion), and flexor carpi 
radialis (writst flexion) muscles. The electrodes recorded the 
EMG signals used to drive the musculoskeletal model-based 
controller. We placed two electrogoniometers (SG65, 
Biometrics LTD, Newport, UK) to measure MCP and wrist 

flexion/extension angles (Figure 1); the goniometers were 
chosen because their output voltage could be efficiently 
converted to joint angles for real-time control. EMG and 
goniometer data were recorded synchronously at 3000 Hz 
(TeleMyo 2400T, Noraxon, Scottsdale, AZ) 

D. Musculoskeletal Model-Based Controller Tuning 

Before the experiment, we tuned the musculoskeletal 
model for each subject in two steps. First, we adjusted each 
joint angle of the virtual hand by a constant value so that, when 
the subject’s hand was relaxed, the virtual hand approximated 
the resting posture. Second, we defined the values of four 
linear gains that scaled the magnitudes of the muscle 
activations of the four virtual muscles (one gain value per 
muscle). The purpose of the gains was to adjust the sensitivity 
of the virtual hand’s movements based on verbal feedback 
from the subjects while they attempted to align the virtual hand 
with the target postures. 

E. Experiment Trials 

The subjects were seated with their dominant elbow 
placed on an arm rest; the elbow was flexed to 90° and the 
forearm was in neutral pronation/supination. During the 
experiment, the subjects controlled the virtual hand with 
either the goniometers or the musculoskeletal model-based 
controller, hereafter referred to as goniometer trials and model 
trials, respectively. Subjects completed 6 blocks (3 
goniometer, 3 model) of 5 trials with the order of blocks 
randomized. In model trials, the virtual hand’s joint angles 
were set equal to the angles predicted by the musculoskeletal 
model and offset by a constant value according to the tuning 
procedure described above. In goniometer trials, the virtual 
hand joint angles were set equal to those measured by the 
gonimoeters. 

F. Data and Statistical Analysis 

The data measured in every trial were (1) EMG from four 
muscles, (2) goniometer-measured wrist and MCP joint 
angles, and (3) virtual hand joint angles. Note that 
goniometer-measured and virtual hand joint angles were 
equal for goniometer trials. The goniometer-measured joint 
angle data contained low-amplitude, high-frequency noise, 
typical of analog sensors; to reduce the noise content and for 
consistency, both actual (i.e. measured from the goniometer) 
and virtual wrist and MCP joint angles were smoothed in 
MATLAB using a 4th-order zero-phase digital Butterworth 
low-pass filter with a 4-Hz cutoff frequency. From the 
smoothed joint angle data, we computed two performance 
measures: normalized path length and task duration [12]. 
Normalized path length was the trajectory length (in joint 
space) divided by the minimum possible trajectory length. 
Task duration was the time elapsed between achieving the 
base posture and achieving the target posture. 

 
Figure 1. Placement of the two goniometers. One spanned the 

metacarpophalangeal (MCP) joint on the radial side of the hand, 

and the other spanned the wrist joint on the ulnar side of the hand. 
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We performed a statistical analysis to determine the effect 
of control mode (goniometer vs model), target (1, 2, 3, 4), and 
the test by target interaction on task performance and 
movement smoothness. We used a mixed-effects ANOVA 
model with two random blocking factors: individual 
“subjects” and “experiment block” conditions. The raw 
experimental data had a skewed right distribution, so the data 
were log-transformed to meet the normality assumption for the 
ANOVA analysis. Least square means were computed and 
separated with the Tukey HSD correction method. A Levene's 
test was used to assess the equal variances for the residuals. A 
Shapiro-Wilk W and QQ normality plots were used to evaluate 
the normality of ANOVA residuals. Finally, we computed the 
pair-wise Pearson’s correlation coefficient, r, for each pair of 
task performance measures. JMP, version 15.1 was used for 
the analysis (SAS institute, NC, USA). Differences and 
correlations were considered significant for p<0.05. 

III. RESULTS 

Task performance was better in goniometer trials than in 
model trials based on the log-transformed task duration and 
nomralzed path length data (Figure 2). Goniometer trials had 
lower task duration (3.3±3.4 sec, median=2.4 sec) than model 
trials (12.3±10.7 sec, median=8.7 sec, p<0.0001).  Moreover, 
for task duration, there was a significant interaction between 
test and target (p=0.0057); during model trials, target 3 was 
significantly different from targets 4 and 1. Goniometer trials 
had lower normalized path length (2.0±1.6, median=1.6) than 
model trials (4.1±4.3, median=2.4, p<0.0001). For 
normalized path length, there was a significant effect of 
‘target’; target 3 was significantly different from targets 4 and 
1. Log-transformed normalized path length was weakly but 
significantly correlated with log-transformed task duration 
(r=0.410, p<0.0001).  

Since we also recorded goniometer data during model 
trials, we compared subjects' actual and virtual hand 
movements during model trials. Qualitatively, actual and 

virtual joints assumed similar relative postures (Figure 3); for 
example, for targets 3 and 4, the MCP joint was flexed (i.e. 
negative angle) while the wrist joint was extended (i.e. 
positive angle) for both actual and virtual hands. However, on 
average, the virtual joints were more flexed (i.e. more 
positive) than the actual joints. 

IV. DISCUSSION 

Unsurprisingly, our results supported the initial hypothesis 
that performance of the virtual task would be better with the 
intact human hand (via electrogoniometers) than with the 
musculoskeletal model-based controller. Controlling the 
virtual hand with goniometers was very intuitive for subjects. 
It was also not surprising that the two task performance 
measures were correlated with one another, though weakly so. 
For example, a trial could be expected to have a higher task 
duration, on average, when the virtual hand had a greater total 

 
Figure 2. Box plot comparison of task performance between goniometer 
(Gon) and model trials (across subjects, trials, and targets) based on 

measurements of normalized path length and task duration. Plotted on a log 

scale since the data were skewed. Circles show trial outcomes that were 

>1.5X the interquartile range. 

 
Figure 3. Example of one subject’s joint angles (in degrees) during the target acquisition task for each target over the percentage task 

duration. The top row represents healthy hand movement as measured by the goniometers during the goniometer-driven test. The middle 

row represents the joint angles of the virtual hand using the EMG-driven controller. The bottom row represents the actual joint angles of the 

subject’s hand during the EMG-driven test. All trials across all blocks are included in each target plot. The target postures (grey numbered) 

relative to the neutral posture (black) are shown above the data plots. 
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displacement (i.e., higher normalized path length).  

We evaluated subjects’ real-time control performance of a 
planar virtual posture-matching task. Other types of virtual 
tasks, such as moving the fingertip along a virtual path, could 
be used [12]. The evaluation could also be extended to three-
dimensional virtual and physical environments, which have 
more ecological validity. Other measures have also been used 
to evaluate performance of similar target-based tasks for 
human-machine interfaces [e.g., 17]. It is preferable that any 
two task performance measures are less correlated so that they 
provide unique, rather than redundant, information about 
performance. 

Our within-subjects comparison of the two control modes 
was possible because we included only able-bodied subjects. 
One potential way to adapt the proposed method for unilateral 
amputees is to have subjects complete the task while 
attempting bilateral mirrored movements; the data needed for 
goniometer and model trials would be measured from the 
sound and residual limbs, respectively (e.g.[2]). A limitation 
of this approach is that it assumes that the sound-limb 
kinematics are perfectly aligned with the movement intent of 
the residual limb, which is unlikely based on the bilateral 
wrist and hand movements of able-bodied subjects [18].  

There were two limitations of the tuning procedure that 
should be addressed in future studies. First, the current tuning 
procedure was subjective and based on (1) the individual 
experience and approach of the tuner and (2) verbal feedback 
from the subject during a tuning session. An automated tuning 
procedure should be developed to make it more objective and 
consistent. Second, the tuning procedure was based on the 
select goal of enabling subjects to easily move the virtual hand 
to each of the target postures. It is not clear if different or more 
tuning goals would yield better control performance. 

There were other study limitations. Surface EMG is more 
convenient than intramuscular EMG but includes more noise 
and crosstalk from other muscles, which can degrade control 
performance. Due to inter-subject variation in 
musculoskeletal anatomy, electrode placement may not have 
been consistent among subjects. Potential errors in 
goniometer measurements, due to calibration errors or 
variation in goniometer placement among subjects, may have 
caused some mismatch between the virtual and biological 
hands. Other (e.g., marker-based) motion capture methods 
may measure wrist/hand kinematics more accurately. 

V. CONCLUSION 

Our study demonstrated a new paradigm for using the intact 
human hand as a gold standard for benchmarking the 
performance of EMG control algorithms for myoelectric 
prostheses and other neural-machine interfaces. Such a gold 
standard would permit a more valid comparison of control 
algorithms among different studies to reliably determine their 
relative performance. Determining the relative performance 
of control algorithms will help more rapidly translate high-
performing algorithms to clinical applications and advance 
the state of the art. Next steps toward broad adoption of the 
proposed method include (1) defining a set of standardized 
tasks, experiment methods, and outcome measures, and (2) 
establishing an online repository for the exchange of data for 
the intact human hand.  
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