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Abstract— Stress is a physiological state that hampers mental
health and has serious consequences to physical health. More-
over, the COVID-19 pandemic has increased stress levels among
people across the globe. Therefore, continuous monitoring
and detection of stress are necessary. The recent advances
in wearable devices have allowed the monitoring of several
physiological signals related to stress. Among them, wrist-worn
wearable devices like smartwatches are most popular due to
their convenient usage. And the photoplethysmography (PPG)
sensor is the most prevalent sensor in almost all consumer-
grade wrist-worn smartwatches. Therefore, this paper focuses
on using a wrist-based PPG sensor that collects Blood Volume
Pulse (BVP) signals to detect stress which may be applicable
for consumer-grade wristwatches. Moreover, state-of-the-art
works have used either classical machine learning algorithms
to detect stress using hand-crafted features or have used deep
learning algorithms like Convolutional Neural Network (CNN)
which automatically extracts features. This paper proposes a
novel hybrid CNN (H-CNN) classifier that uses both the hand-
crafted features and the automatically extracted features by
CNN to detect stress using the BVP signal. Evaluation on the
benchmark WESAD dataset shows that, for 3-class classification
(Baseline vs. Stress vs. Amusement), our proposed H-CNN
outperforms traditional classifiers and normal CNN by ≈5%
and ≈7% accuracy, and ≈10% and ≈7% macro F1 score,
respectively. Also for 2-class classification (Stress vs. Non-stress),
our proposed H-CNN outperforms traditional classifiers and
normal CNN by ≈3% and ≈5% accuracy, and ≈3% and ≈7%
macro F1 score, respectively.

I. INTRODUCTION

Stress is a physiological state that triggers the fight-
or-flight response [1] through chemical or hormone surge
when someone perceives a new challenge or any adver-
sarial situation. Depending on the types of challenges the
stress can be - Physical (workout, running); Cognitive
(solving problems, thinking); and Emotional (nervousness,
fear, anxiety, frustration, sadness). According to American
Psychological Association (APA), stress can be of 3 types
based on the frequency of experiencing it [2]. Acute stress
is a common form of stress that everyone faces for the short
term. Therefore, it is common to experience it and not always
harmful. Episodic acute stress happens when someone feels
stressed in a repetitive manner which happens mostly due
to cognitive or emotional stress. Sometimes cognitive stress
such as overworking regularly may lead to emotional stress
such as anxiety, fatigue - causing episodic acute stress.
British Health and Safety Executive (HSE) reports that stress,
depression, or anxiety accounted for 51% of all work-
related ill health cases [3].Finally, Chronic stress where an
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individual suffers for many months or years is the major
cause of clinical depression, sleep deprivation/oversleeping,
abnormal body weight changes, cardiovascular diseases, or
even suicide.It happens mostly due to emotional stress which
often remains unrecognized or people deny to acknowledge it
due to social stigma. Therefore, emotional stress recognition
is really important as it not only hampers mental health but
also has severe consequences to physical health.

Moreover, this recent COVID-19 pandemic that has caused
more than 4.16 Million global death as of July 2021, has
increased the emotional stress among people. American
Psychological Association (APA) issued a warning about the
impact of these stressful events on long-term physical and
mental health calling it as ‘A National Mental Health Crisis’
in their October 2020 report [4]. Another survey on 3013
adults, released by APA on March 2021 states that - 61%
experienced undesired weight changes, 67% had overslept,
48% parents had increased stress, 25% of the essential
workers encountered mental health disorder and required
emotional support since the start of the pandemic [5]. The
aforementioned facts prove that recognition of emotional
stress has become more crucial now than ever.

II. RELATED WORKS

Recent advances in technology [6], [7] have enabled
the collection of stress and emotion-related physiological
signals through various modalities like video, audio, and
physiological sensors. Besides the advances in data analysis
techniques have enabled the use of various machine or deep
learning algorithms to classify or detect those states. Authors
in [8], [9] used audio and/or visual data to classify different
emotional states. However, such modalities are intrusive in
nature and raise privacy concerns for the users. Therefore,
the use of physiological signals collected through various
wearable devices has been gaining momentum in stress and
emotion detection.

Authors in [10] use chest-worn device that captures phys-
iological signals from Electrocardiogram (ECG), respiration
(RESP) and 3-axis Accelerometer (ACC) to detect stress. An-
other group in [11] used a wrist-worn device recording BVP,
Electrodermal Activity (EDA), Skin Temperature (TEMP),
and ACC to detect stress. Researchers in [12] used ECG,
RESP, EDA, and Electromyogram (EMG) data to detect
emotions in response to music.

The datasets used in the above works are collected in-
house and are not publicly available. On the other hand,
authors in [13] published a dataset that has ECG, EDA,
RESP, and EMG data for drivers’ stress detection. Another
group in [14] published a dataset containing EMG, BVP,
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EDA, RESP signals for 8 different emotional stimuli from
a single subject. Authors in [15] published a dataset for
emotion analysis using Electroencephalogram (EEG), facial
videos, and physiological signals. The aforementioned works
either focused on detecting stress or emotion using wearable
devices. Authors in [16] tried to bridge that gap by creating
WESAD (Wearable Stress and Affect Detection) dataset that
contains stress and emotion data using chest-worn and wrist-
worn devices. They also provided a comparative analysis
of individual physiological signals from chest and wrist in
detecting stress using classical machine learning algorithms
- Decision Tree (DT), Random Forest (RF), etc. The same
authors also used the wrist-worn device in [17] to detect
stress and emotion in the wild. Researchers in [18] used the
WESAD dataset to propose a sensor translation mechanism
to create chest-based features from the wrist data to detect
stress using classical machine learning algorithms.

III. PROBLEM STATEMENT AND CONTRIBUTIONS

The aforementioned works in Section II used multimodal
wearable sensor data from either chest/wrist-worn devices to
detect emotion or stress. However, wrist-worn devices are
more convenient for daily use than chest ones. Besides, the
wrist-worn devices used in the literature are mostly research-
grade and have multiple sensors like PPG, EDA, TEMP,
ACC. Among all these wrist-based sensors, PPG is mostly
available in all consumer-grade wristwatches and has proven
to be a strong biomarker for detecting stress [16]. Therefore,
this paper focuses on detecting stress using a wrist-based
PPG sensor suitable for daily monitoring via consumer-grade
wristwatches. Moreover, state-of-the-art works have used
either classical machine learning algorithms to detect stress
or emotion using hand-crafted features or they have used
deep learning algorithms like Convolutional Neural Network
(CNN) which automatically extracts features. In this paper,
we propose a novel hybrid CNN (H-CNN) that uses both the
hand-crafted features and automatically extracted features by
CNN to detect stress. Finally, we demonstrate the effective-
ness of our hybrid approach using wrist-based BVP signal
from the WESAD [16] dataset. The novel contributions of
this paper are as follows:

• Propose a novel hybrid CNN (H-CNN) classifier for
stress detection using wrist-based PPG sensor. It uses
both handcrafted features and automatically extracted
features by CNN to detect stress.

• Validation of our proposed approach using BVP signal
from WESAD [16] dataset collected through wrist-
based PPG.

• Evaluation on the benchmark WESAD dataset shows
that, for 3-class classification (Baseline vs. Stress vs.
Amusement), our proposed H-CNN outperforms tradi-
tional classifiers and normal CNN by ≈5% and ≈7%
accuracy, and ≈10% and ≈7% macro F1 score, respec-
tively. Also for 2-class classification (Stress vs. Non-
stress), our proposed H-CNN outperforms traditional
classifiers and normal CNN by ≈3% and ≈5% accuracy,
and ≈3% and ≈7% macro F1 score, respectively.

TABLE I
LIST OF EXTRACTED FEATURES

Feature Symbol Feature Names
µHR, σHR Mean and Standard Devaiation of HR

µHRV , σHRV Mean and Standard Devaiation of HRV

NN50, pNN50
Number and percentage of HRV

intervals differing more than 50 ms
rmsHRV Root mean square of the HRV
fxHRV Energy in different

x ∈ ULF,LF,HF,UHF frequency component of the HRV
f
LF/HF
HRV Ratio of LF and HF component∑f

x

∑
of the frequnecy components

x ∈ ULF,LF,HF,UHF in ULF-HF
relfx Relative power of freq. components

LFnorm, HFnorm Normalised LF and HF component
Heart Rate (HR), Heart Rate Variability (HRV)

IV. OUR METHODOLOGY

A. Pre-processing Steps

1) Filtering: As shown in Figure 1, the pre-processing
steps start with filtering the raw BVP signal. We filter the
raw BVP signal by a butter-worth bandpass filter of order 3
with cutoff frequencies (f1=.7 Hz and f2=3.7 Hz). We take
into account the heart rate at rest (≈40 BPM) or high heart
rate due to exercise scenarios or tachycardia (≈220 BPM)
following the method mentioned in [19].

2) Segmentation: The filtered signal is segmented by a
window of 60 seconds of data following the paper that
introduced the WESAD dataset [16]. We use a sliding length
of 5 seconds in between the segments. Each segment contains
3840 samples as the sampling rate of the BVP signal is 64
Hz.

3) Feature extraction: The first step of the feature ex-
traction is the detection of heartbeats. Once the peaks are
detected, different time domain and frequency domain fea-
tures are extracted based on the location of the peaks. We
extract the time and frequency domain features as in [16] to
ensure a fair comparison of our H-CNN classifier against the
traditional machine learning classifiers used in the WESAD
paper. We use the same frequency bands - ultra-low (ULF:
0.01-0.04 Hz), low (LF: 0.04-0.15 Hz), high (HF: 0.15-0.4
Hz) and ultra-high (UHF: 0.4-1.0 Hz) band as in [16] to
calculate different frequency domain features. The list of
extracted features is given in Table I.

4) Z-score normalization: Z-score normalization is per-
formed before passing the segments and extracted features
to the H-CNN architecture.

B. Hybrid CNN (H-CNN) Architecture

The normalized BVP segments and the corresponding
features for each segment are passed to our H-CNN archi-
tecture as shown in Figure 1. The H-CNN architecture has
two input layers- Segment and feature input. The segment
input layer is followed by a dropout layer (with a 20%
dropout rate) which is then followed by 3 convolution blocks.
The first and second convolution blocks have - convolution,
ReLU activation, average pooling, and batch normalization
layers. Both first and second convolution block is followed
by dropout layers with 50% dropout rate which are added
to reduce overfitting. The third convolution block has one
convolution layer followed by a global average pooling layer
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Fig. 1. Overview of Our Proposed Methodology

TABLE II
HYBRID CNN ARCHITECTURE DETAILS

Layer Kernel Stride Act. Output # of
Name Size Size Func. Shape Param.

Seg. Inp. - - - 3840x1 0
D.O. 1 - - - 3840x1 0
Conv 1 64 4 ReLU 945x8 520
Pool 1 4 4 - 236x8 0
B.N. 1 - - - 236x8 32
D.O. 2 - - - 236x8 0
Conv 2 32 2 ReLU 103x16 4112
Pool 2 4 4 - 25x16 0
B.N. 2 - - - 25x16 64
D.O. 3 - - - 25x16 0
Conv 3 16 1 ReLU 10x8 2056
G. Pool 4 4 - 8 0
Flatten - - - 8 0

Feat. Inp. - - - 19 0
D.O. 4 - - - 19 0

Feat. Den. - - ReLU 4 80
Concate - - - 12 0

Out. Den. - - SM nc 13*nc

Total Number of Parameters 6846+(13*nc)
Segment Input (Seg. Inp.), Dropout (D.O.), Batch Normalization (B.N.),

Global Average Pooling (G. Pool), Feature Input (Feat. Inp.), Feature
Dense (Feat. Den.), Output Dense (Out. Den.), Softmax (S.M.)

which is also used to reduce the overfitting of the CNN.
For the normal CNN architecture, the output of the global
average pooling layer is directly fed to the output dense
layer followed by a Softmax activation. However, for the H-
CNN architecture, the output of the global average pooling
layer is concatenated with the feature dense layer. Finally,
the concatenated layer is fed to the output dense layer that
is followed by the Softmax activation.The details of our H-
CNN architecture are shown in Table II. As shown in Table
II, the total number of parameters required to classify a
segment is 6846+(13*nc), where nc is the number of output
classes. In this paper, we perform both 2-class (Stress vs.
Non-stress) and 3-class (Baseline vs. Stress vs. Amusement)
classification from the WESAD dataset.

V. EXPERIMENTAL EVALUATION

A. Dataset

WESAD dataset is used for the validation of our proposed
methodology as it is the only publicly available dataset that
contains wrist-based PPG sensor data for stress and affect
detection. Although the dataset contains data for a total of
15 subjects from both chest (RespiBAN) and wrist (Empatica

E4) worn sensors, we are only interested in using the wrist-
based BVP signal collected through the PPG sensor. The
dataset is labeled for 3 types of classes - baseline (neutral),
amusement, stress.

B. Performance Metric
As the number of segments for different classes in the

dataset is highly imbalanced, only classification accuracy
is not appropriate to measure performance. Therefore, the
F1 score provides a better measure that balances precision
and recall performance. To ensure a fair comparison with
our related work in [16], we use a macro F1 score where
each class is given equal importance. The metrics used for
evaluation are given below:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Macro F1 =
1

nc

nc∑
i

2 ∗ Precisioni.Recalli
Precisioni +Recalli

(4)

Where TP, TN, FP, FN represents True Positives, True
Negatives, False Positives, and False Negatives respectively.
The classes are indexed by i, and nc is the number of output
classes.

C. Model Training and Evaluation
We train our normal CNN and H-CNN classifiers with a

batch size of 500. The models are trained for 200 epochs
with an early stopping mechanism having a patience value
of 70. We monitor the validation recall value to select the
best model from the epochs. To ensure proper training for
the imbalance dataset, we assign class weights to each class
using the following formula in Eq. 5.

wi =
1

Ni
∗ N

nc
(5)

Here, wi, and Ni represent the class weight and the
number of segments belonging to class i, respectively. N is
the total number of segments from all classes and nc is the
number of output classes. The CategoricalCrossentropy is
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Classification

used as the loss function. We use the Adam optimizer with
a learning rate of .001. To demonstrate the generalization
property of our trained model and to ensure a fair comparison
with the traditional classifiers in [16], we also perform Leave
One Subject Out (LOSO) validation. As shown in Figure 2,
the Linear Discriminant Analysis (LDA) classifier in [16]
outperforms other classical algorithms for 3-class classifi-
cation with an accuracy of 70.17% and macro F1 score of
54.72%. Our normal CNN achieves slightly less accuracy
of 68.52% compared to LDA but outperforms in macro F1
score with 57.67%. Our H-CNN classifier outperforms both
LDA and our normal CNN with an accuracy of 75.21% and
macro F1 score of 64.15%. Thus, our H-CNN improves the
accuracy by ≈5% and ≈7% compared to LDA and normal
CNN, respectively. For macro F1 score, our H-CNN shows
higher improvement of ≈10% and ≈7% compared to LDA
and normal CNN, respectively. For 2-class (Stress vs. Non-
stress) classification, baseline and amusement are considered
as the non-stress class. As shown in Figure 3, for 2-class
classification also, our H-CNN improves the accuracy by
≈3% and ≈5% compared to LDA classifier and normal
CNN, respectively. Similarly, for macro F1 score, our H-
CNN improves the performance by ≈3% and ≈7% compared
to LDA and normal CNN, respectively.

VI. CONCLUSION

This paper proposes a novel hybrid CNN (H-CNN) classi-
fier to detect stress using a wrist-based PPG sensor focusing
on consumer-grade wristwatches. Our H-CNN uses both the
hand-crafted features and the automatically extracted features
by CNN to detect stress using the BVP signal. Evaluation
on the benchmark WESAD dataset shows that, for 3-class
classification (Baseline vs. Stress vs. Amusement), our pro-
posed H-CNN outperforms traditional classifiers and normal
CNN by ≈5% and ≈7% accuracy, and ≈10% and ≈7%
macro F1 score, respectively. Also for 2-class classification
(Stress vs. Non-stress), our proposed H-CNN outperforms

traditional classifiers and normal CNN by ≈3% and ≈5%
accuracy, and ≈3% and ≈7% macro F1 score, respectively.
To the best of our knowledge, our H-CNN shows the highest
performance for both 3-class and 2 -class classification using
the BVP signal from the WESAD dataset while performing
LOSO validation.
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