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Abstract— Cognitive fatigue is a common problem among
workers which has become an increasing global problem.
While existing multi-modal wearable sensors-aided automatic
cognitive fatigue monitoring tools have focused on physical
and physiological sensors (ECG, PPG, Actigraphy) analytic
on specific group of people (say gamers, athletes, construction
workers), activity-awareness is utmost importance due to its
different responses on physiology in different person. In this
paper, we propose a novel framework, Activity-Aware Recur-
rent Neural Network (AcRoNN), that can generalize individual
activity recognition and improve cognitive fatigue estimation
significantly. We evaluate and compare our proposed method
with state-of-art methods using one real-time collected dataset
from 5 individuals and another publicly available dataset from
27 individuals achieving max. 19% improvement over the
baseline model.

I. INTRODUCTION

Cognitive fatigue is a syndrome conceptualized as re-
sulting from chronic workplace stress that has not been
successfully managed [1]. Although, cognitive fatigue is not
a clinical condition which can occur in any workplace or
home environment where there is stress, it is recognized
by the World Health Organization (WHO) as a syndrome
[1]. In short term, cognitive fatigue may cause sleeping
disturbances, anxiety, irritability and hormonal disturbances
and in long run, this may result more severe impacts on
health safety such as cardiovascular, gastrointestinal and
neuropsychological disorders [2].

Current frameworks for cognitive fatigue estimation are
mostly self-reported questionnaire based [18], which is im-
possible to generate continuous fatigue report by avoiding
recall bias [18]. Recent advancement of wearable physical
and physiological sensor technologies enable accurate es-
timation of cognitive fatigue related partial outcomes such
as stress, anxiety, sleep quality etc, which provides ultimate
opportunity to researchers to estimate cognitive fatigue con-
tinuously [15], [16] that includes actigraphy [17], heart rate
(HR) [17], Electrocardiography (ECG) and Electromyogra-
phy (EMG) sensors along with traditional and deep machine
learning techniques. Combining accelerometer with ECG
is a successful attempt as well before [3] which proposed
to use deep learning frameworks (LSTM with Consistency
Self-Attention, LSTM-CSA) but suffers with the lack of
adaptability across diverse population.

Due to the dissimilarities among different individual
group’s responses on cognitive fatigue in terms of physical
and physiological contexts, current wearable-based fatigue
estimation research is constrained in group specific cognitive
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fatigue estimation [19]. As per many clinical psychologists
and mental health researchers, cognitive fatigue estimation
should be more personalized, rather than generalized on
specific group of people to keep mental healthcare systems
sustainable for future generations [20].

While, the needs of building personalized cognitive fatigue
estimation tool, we have the following key question: can
we develop personalized cognitive fatigue assessment tool
considering their activity as a domain invariant feature and
fatigue as personalized response on each activity? As we
know, autonomic nervous system (ANS) restrains the body’s
major physiological activities including the heart rate (HR)
and gland secretion or electrodermal activity (EDA) [21].
However, these responses are contaminated with physical
activity artifacts significantly [22]. The central hypothesis of
the this paper is: each performed activity context generates
similar artifacts on same activity over diverse population,
thus, we can align similar activities (activity-awareness) as
person invariant feature and its physiological responses as
personalized fatigue feature. For example, in Fig. 1, we
illustrate the EDA responses on two different activities: (i)
steady hand (ii) waving hand over two different physiological
states: (i) stress and (ii) no stress. The Fig. 1 clearly shows
that same activity (waving hands) has similar EDA response
patterns (but different amplitude) due to similar artifacts
which signifies our hypothesis.

In this paper, we develop a novel Activity-Aware Recurrent
Neural Network (AcRoNN) model and utilize it to design
a personalized cognitive fatigue assessment framework, that
provides the following key contributions

o We develop a novel Activity-Aware Recurrent Neural

Network (AcRoNN) framework that is able to exploit
contextual cues present in any event from actigraphy
sensor and then assess cognitive fatigue from physiolog-
ical (EDA and HR) sensor signal using a deep recurrent
neural network.

o Apply AcRoNN on three datasets and evaluate the

capability of AcRoNN framework to improve cognitive
fatigue assessment.

II. ACTIVITY-AWARE RECURRENT NEURAL NETWORK

Fig. 3 shows the overall schematic diagram of our context-
aware cognitive fatigue assessment framework. In this frame-
work, recognized activity information is intertwined with
the cognitive fatigue assessment architecture. We take (stage
1) cognitive fatigue assessment scoring in terms of gestural
activity, and then postural activity information, and finally we
(stage 2) re-evaluate the cognitive fatigue assessment scoring
based on activity relationships it has learned from stage 1.
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Fig. 1. Electrodermal ac-
tivity (EDA) responses (micro
Siemens w©S) on 2 seconds
of 2 dominant hand gestures:
steady hand and waving hand
twice during two physiological
states: stress and no stress of
the same subject. Note that, the
subject was in sitting position.
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Fig. 3. Proposed Activity-Scoring and LSTM-CSA (Consistency Self-
Attention) based two stage AcRoNN model

A. Stage One: Fatigue Detection and Feature Mapping

This stage involves feature extraction, activity recognition
and activity-based score mapping for fatigue detection.

1) Wearable Sensor Signal Processing: Wearable sensors
can be two types: physical and physiological. Physical sen-
sors (accelerometer, gyroscope etc.) signal values change
over the movements of the sensor devices. Physiological
sensors change over physiological condition of body such
as EDA changes over stress and PPG changes over heart
rate. However, physical movements also impose noises on
physiological sensor signals which is called motion artifacts.

Physiological Signal Processing: A continuous and de-
screte decomposition of EDA, and time and frequency do-
main analytics of EDA signal are investigated before to
extract relevant physiological features which were contami-
nated with noises and motion artifacts [25]. [26] denoised
and classified EDA from cognitive load and stress with
accuracy higher than 80%. Though motion artifacts removal
techniques such as exponential smoothing and low-pass
filters provide significant improvement in filtering EDA sig-
nals, wavelet transforms offer more sophisticated refinement
for any kind of physiological sensors such as electroen-
cephalogram, electrocardiogram [24], and PPG [27]. [28]
proposed a stationary wavelet transform (SWT) based motion
artifacts removal technique. ‘cvXEDA’ proposed a convex
optimization technique considering EDA as a mixture of
white gaussian noise, tonic and phasic components where
white gaussian noise includes motion artifacts and external
noises [24]. We combine SWT and ‘cvxEDA’ together to
remove noises and motion artifacts from EDA signal. We
used Periodic Moving Average Filter (PMAF) to reduce
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High-level schematic diagram of AcRoNN architecture that consists two stages of learning

noise. Then, we generated 33 heart rate variability (HRV)
features from PPG (as per [3]) and 12 statistical features
from EDA (as per [21]) signals with a 10-seconds window.

Accelerometer Signal Processing: We used Bai et. al.
proposed accelerometer signal processing method [3]. We
used ActiLife tool [29], and calculated the Actigraphy counts
(from accelerometer) every 5 seconds, and detect the non-
wear time (for invalid data removal). Within every 10-
seconds window, based on Actigraphy counts we further
extracted 8 statistical features, i.e.,mean, median, standard
deviation, variance, minimum value, maximum value, skew-
ness and kurtosis for further processing.

Multimodal Feature Sequence Construction: After
preprocessing and feature engineering, the original seg-
ment can be transformed into a D-dimensional sequence
X = {x € RP}., where T is the sequence
length (i.e., the number of windows/epochs within a seg-
ment), and x; = featqee U feateqq U featnr, where
featqee, feateqq, featy, represent accelerometer, EDA and
HR features extracted above. Since, each of the extracted
features were in 10-seconds window, the concatenated input
feature x; has a dimension of 53 (33 + 12 + 8).

2) Activity Recognition Module: We develop a two step
multi-label activity recognition framework which consists of
two LSTM with Consistency Self-Attention (LSTM-CSA)
[23] models, (1) gestural activity recognition and (2) postural
activity recognition. Both of the LSTM-CSA models are
independent from each other, trained and tested separately
using hand gesture and postural activity labels respectively
using the input accelerometer features (feat,..) and their
corresponding labels. For all LSTM-CSA models, we used
the following regularization term as I'(a) = T'), Joy —
az—1| where T, T'(«) tend to penalize heavily with a larger
contextual scores to maintain its global consistency.

3) Class Contextual Feature Maps: We develop a contex-
tual feature mapping for each cognitive fatigue label as

cfmc(x,y) = Z hmb(mvy)
cls(b)=c
crM, = I

max(cfm.

(D
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The output of the contextual feature map layer is a (H. X
W, x C) tensor, where H. and W, are the segment dimen-
sions, and C' is the number of classes. We set H. = 23 while
we have already defined W, = 53.

4) Contextual Scoring: We designed a scoring function
to measure the contextual relevance of cognitive fatigue
detection in relation to multiple-label’s presence in a window
[30]. Scores are computed using the contextual feature maps
generated in each stage of our pipeline, and are used as
the ranking score in AP calculations to measure whether
contextual learner confirms or refutes detections passed to it,
based on learned semantic relationships. The scoring process
is designed as a new network layer, and appended to the end
of each stage in our pipeline. We defined two contextual-
scoring method as per [30].

« Individual Contextual Scoring: We calculate gestural
and postural-based cognitive fatigue score as

Z FMb(ajv y)
S b)) = =——--
cores ( ) 20?1 X 20§y

2
where F'Mj, represents the activity bounding box (start
and end of an activity) related relevance score and b
represents each activity type i.e. gestural or postural
activity as per [30]. We have two types of individual
contextual scoring in our framework, gestural-based
cognitive fatigue scoring and postural-based cognitive
fatigue scoring (Fig. 3).

e Cumulative Contextual Scoring: In this scoring
method, we add both gestural and postural activity based
cognitive fatigue scoring together for producing final
Activity-based cognitive fatigue re-scoring which can
be defined as follows

> CFMy(z,y)
S b T e
coreg( ) 20?1 X 20§y

3)
where C'F' M}, represents the cumulative activity bound-
ing box (start and end of an activity) related relevance
score and c represents cumulative activity type i.e., ei-
ther gestural or postural activity-based cognitive fatigue
scoring or re-scoring [30].

B. Stage Two: Activity-Aware Cognitive Fatigue Learner

The second stage is an LSTM with Consistency Self-
Attention (LSTM-CSA) model that is trained to learn se-
mantic relationships using the cumulative contextual score
mapping generated by the primary cognitive fatigue detector
using the Equation 1.

III. EXPERIMENTAL EVALUATION

In this section, we aim to evaluate our proposed Activity-
Aware Recurrent (AcRoNN) performance towards developing
a personalized cognitive fatigue assessment system using
wearables without any target labels.

A. Datasets

Al: Activity Recognition Dataset: It is our previously
collected data consists of hand gestural (8-hand gestures) and
postural (#4) activities [22], [31] using Empatica E4 watch.

D1: Gamer’s Fatigue Dataset: We recruited 5 student
video games players (age ranges from 19-25) for 7 days who
stayed up during a 22 hour shift every alternative day (4 days
each) to simulate cognitive fatigue while wearing Empatica
E4 watch [4]. Empatica E4 watch consists of accelerometer
(ACCQC), electrodermal activity (EDA), photoplethysmography
(PPG) and skin temperature (TEMP) sensors. During the data
collection (including non-gaming days), participates were
asked to measure their sleepiness based on the ‘Stanford
Sleepiness Scale’ (SSS) [5], [8] (ranges 1-7 representing
active to extremely sleepy) and the ‘Sleep-2-peak’ score [6]
(ranges 1-7 representing active to extremely sleepy) using
Sleep2Peak Android App [7], [9].

D2: Healthy Adults Fatigue Dataset: We have used
publicly available health adults fatigue dataset [10]. Data
from 28 healthy individuals (26-55 years of age, average
age 42 years, 41/51% female/male), of which 17 enrolled
up to 2 days after returning from long-haul flights with
3-7 time zone differences and hence were recovering from
jet lag, from 1 to 219 consecutive days (973 days) were
collected. Objective data were collected using a multisensor
wearable device, Everion (Biovotion AG, Switzerland [11]),
in conjunction with a mobile app, SymTrack (Gastric GmbH,
Switzerland), to deliver a daily fatigue questionnaire. Volun-
teers were asked to continuously wear the Everion device
around their non-dominant arm over a 1-week period. The
device combines a 3-axis accelerometer, barometer, galvanic
skin response electrode, and temperature and photo sensors.
Dataset tracked a total of 12 parameters at 1-Hz temporal
resolution on physical activity and physiology. Volunteers
were instructed to complete a 4-item daily questionnaire in
the evening to capture their subjective assessment of fatigue,
adapted from the Fatigue Assessment Scale [12] and Visual
Analogue Scale to evaluate fatigue severity [13]: (10 Physical
fatigue score (PhF), (2) Mental fatigue score (MF), (3) Visual
analogue scale score (VAS), and, (4) Indicator of relative
perception (RelP) (see [10] for more details).

B. Pre-Processing

We excluded days where more than 80% of the sam-
ples were missing to ensure an acceptable performance of
downstream analysis. Missing samples were due to subjects
not wearing the device (e.g., during charging) or low-quality
segments (e.g., loss of skin contact). This filtering step led
to a total of 5 subjects and 821 hours of data annotated
(Stanford Sleepiness Scale and Sleep-2-peak) labels with
continuous Empatica E4 sensor data (excluding 1 hour
recharging sessions). Finally, we imputed missing data gaps
using the state-of-the-art unidirectional uncorrelated recur-
rent imputation model [14].

C. Baseline Algorithm development

We re-implemented latest cognitive fatigue estimation
framework [3]. In Bai et. al. [3], authors generated highest
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accuracy of cognitive fatigue assessment using LSTM-CSA
model. Although, Bai et. al. provided cognitive fatigue detec-
tion method based on PPG (ECG) and Accelerometer sensor
signal processing, we implemented the following baselines
from Bai et. al. method as follows.

o B1: In this framework, we considered original Bai et. al.
approach i.e. using only ECG and Actigraphy features
(total number of features 41 = 33+8) and followed Bai
et. al. to re-implement original baseline paper’s result
without any alteration.

e B2: In this framework, we considered our 53 features
that include Actigraphy, PPG and EDA features and
applied Bai et. al. proposed LSTM-CSA model for
cognitive fatigue assessment.

o B3: In this framework, we combined our activity recog-
nizer produced hand gesture and posture detections, and
applied Bai et. al. considered 41 features (Actigraphy
and ECG) and used our proposed AcRoNN framework.

o AcRoNN: We combine everything together (proposed).

D. Results and Comparisons

Table I shows details of our experimental results and
comparisons with our different baseline models. We can
easily identify that our model AcRoNN outperforms all of the
baseline models significantly in both of our collected datasets
and already available datasets. Also, we can firmly say
that, our AcRoNN model outperforms baseline significantly
even though we chose to use baseline proposed sensors
(Actigraphy and ECG) related features only.

TABLE I
AcRoNN PERFORMANCE COMPARISONS ACROSS BASELINE METHODS

Data B1 (DI) B2 (DI) B3 (D1) AcRoNN (D1)
D1
Precision | 69.65 £ .1 70.45 £ .1 79.58 £ .1 83.87+ .2
[Recall [ 6864%.1 [ 71.76%+.1 [ 80.4+£.2 [ 8245 £ .1 ]
[ F1 [6923+.1 [7456+.2 [7945+.1 [8345+f.1 |
Data B1 (D2) B2 (D2) B3 (D2) AcRoNN (D2)
D2
Precision | 65.36 & . 66.45 £ . 72.56 £ .1 76.76 £ .2
[ Recall [ 66.42 & . 66.45+ .1 | 73.45 £ .1 76.34pm.2 |
[ F1 [ 67.35 £. 6734+ .1 | 7447 £ .1 77ATE.2 ]

IV. CONCLUSION

To develop an automated cognitive fatigue assessment sys-
tem, we introduced a new pipeline from data collection, data
preprocessing, feature engineering, attention based LSTM
and a novel context-aware LSTM model flow. To our best
knowledge, AcRoNN is the best cognitive fatigue detection
model in the existing literature which can be extended to
any other physiological health assessment with proper study
design and data collection. Our efficient two-step feature
map scoring method provides a new concept in context-
aware activity and health monitoring research area that can be
utilized to provide appropriate care to patients with dementia,
asthma, post-traumatic stress disorder and so on.
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