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Abstract— Neural speech decoding aims at providing natural
rate communication assistance to patients with locked-in state
(e.g. due to amyotrophic lateral sclerosis, ALS) in contrast to
the traditional brain-computer interface (BCI) spellers which
are slow. Recent studies have shown that Magnetoencephalog-
raphy (MEG) is a suitable neuroimaging modality to study
neural speech decoding considering its excellent temporal
resolution that can characterize the fast dynamics of speech.
Gradiometers have been the preferred choice for sensor space
analysis with MEG, due to their efficacy in noise suppression
over magnetometers. However, recent development of optically
pumped magnetometers (OPM) based wearable-MEG devices
have shown great potential in future BCI applications, yet, no
prior study has evaluated the performance of magnetometers
in neural speech decoding. In this study, we decoded imagined
and spoken speech from the MEG signals of seven healthy
participants and compared the performance of magnetometers
and gradiometers. Experimental results indicated that magne-
tometers also have the potential for neural speech decoding,
although the performance was significantly lower than that
obtained with gradiometers. Further, we implemented a wavelet
based denoising strategy that improved the performance of both
magnetometers and gradiometers significantly. These findings
reconfirm that gradiometers are preferable in MEG based
decoding analysis but also provide the possibility towards the
use of magnetometers (or OPMs) for the development of the
next-generation speech-BCIs.

I. INTRODUCTION

Neurodegenerative disorders such as amyotrophic lateral
sclerosis (ALS) may cause locked-in syndrome where the
patients are completely paralyzed but remain cognitively
aware. The brain may be the only source of communication
for these patients. Brain-computer interface (BCI) spellers
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can help these patients communicate to a level but the
communication rate of these devices is very slow (under
10 words/min) [1]. Neural speech decoding paradigm on
the other hand attempts to decode speech directly from the
brain and holds promise towards real-time communication
assistance (about 200 words/min), thereby, improving the
quality of life for these neurologically impaired patients.

Neural speech decoding has been investigated either
non-invasively with electroencephalography (EEG) [2]–[5]
and magnetoencephalography (MEG) [6]–[9] or invasively
with electrocorticography (ECoG) [10]–[12] to find neural
patterns corresponding to different speech representations
(phonemes/syllables/words/phrases). To our opinion, MEG
has advantages over the other neuroimaging modalities, i.e.,
being non-invasive in contrast to ECoG and the magnetic
fields recorded with MEG being less distorted compared to
the electric fields recorded via EEG since the cerebrospinal
fluid, skull, and skin have different electrical conductivities
but similar magnetic permeability. MEG has an excellent
temporal resolution (∼ 1ms) and adequate spatial resolution
(∼ 5mm) [13], making it suitable to study the fast and spa-
tially distributed dynamics of cognitive speech processing.
Moreover, MEG signals have been proven effective in vari-
ous speech studies including investigations of MEG oscilla-
tions during speech production [14], [15] and understanding
real-time temporal patterns of neural activations of speech-
motor coordination [16]–[18], providing supporting evidence
towards the use of MEG signals for speech decoding.

MEG measures magnetic fields from the brain with highly
sensitive magnetometers and gradiometers. Gradiometers
consist of two opposite wound coils that are sensitive to
the spatial gradient of magnetic fields whereas the magne-
tometers consist of a single superconducting coil that directly
measures the magnetic fields from deeper sources. Due to the
differential nature of the gradiometers, environmental noise
has the same effect on both coils and becomes canceled out
but magnetometers pick up that noise, thereby, acquiring low
SNR signals. Due to this superiority in noise suppression,
gradiometers have been the preferred choice for sensor space
analysis with MEG [19]. However, this raises the question:
with proper denoising, whether magnetometers have the
potential for speech-BCI applications? In this study, we used
SQUID magnetometers to decode five imagined and spoken
phrases and compared their performance with gradiometers.
In addition, acknowledging the fact that magnetometers are
noisy and might perform poorer than gradiometers, we used
wavelet denoising prior to decoding. To our knowledge, this
is the first study to investigate the efficacy of magnetometers
(vs gradiometers) in neural speech decoding.
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Fig. 1. The MEG unit with a subject

II. DATA COLLECTION

We used two identical 306 channel Elekta Neuromag MEG
machines (MEGIN, LCC) for data collection, one situated at
the Dell Children’s Medical Center, Austin, TX and the other
at Cook Children’s Medical Center, Fort Worth, TX (Fig-
ure 1). The machines consist of 204 gradiometers and 102
magnetometers and are housed inside a magnetic shielded
room (MSR) to discard external magnetic interference. Seven
healthy subjects (3 females and 4 males; age=41 ± 14
years) participated in the study with informed consent in
accordance with the ethical committee of the participating
institutions. Subjects were seated comfortably within the
MEG unit with their arms resting on a platform and their
head inside the MEG dewar. Visual stimuli were generated
by a computer running the STIM2 software (Compumedics,
Ltd.), and presented via a DLP projector onto a screen
situated at 90 cm from the machine. Two pairs of bipolar
EEG electrodes were used to record the electrocardiogram
(ECG) and electrooculogram (EOG) signals. Jaw movement
was recorded via a custom-built air bladder with a pressure
sensor attached to the chin. Voice was recorded with a
standard built-in microphone. Both voice and movement
signals were recorded simultaneously with MEG signals.

The experiment was designed as a time-locked protocol
with four stages in a trial (Figure 2). Five commonly used
phrases were selected as the stimuli of the experiment
namely 1. “Do you understand me”, 2. “That’s perfect”,
3. “How are you”, 4. “Good-bye”, and 5. “I need help”.
The first stage of a trial was ‘Pre-stimuli’ (0.5 s) where
the subjects were at rest. Then a phrase out of the 5
stimuli was displayed on the screen in the second stage
of ‘Perception’ (1 s) in pseudo-randomized order. In the
third stage (‘Imagination’/‘Preparation’) a fixation cross was
shown on the screen heralding the subjects to imagine and
prepare to speak the shown stimuli for 1 s. Then the subjects
overtly spoke the phrase at their natural speaking rate in the
final stage of ‘Production’/‘Articulation’ (1.5 − 2.5 s). We
designed both the imagination and the production task in
the same trial acknowledging the difficulty in verifying the
behavioral compliance of imagined speech production [20].
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Fig. 2. The time-locked experimental protocol, where subjects imagine
and overtly articulate the visual speech stimuli.

This 4-stage task was repeated for 100 trials for each stimulus
with a 1 − 1.5 s of non-movement baseline period between
successive trials.

The MEG data were recorded with a 4 kHz sampling
frequency with an online filter of 0.3 − 1330Hz and then
low pass filtered to 250Hz with a 4th order Butterworth
filter and resampled to 1 kHz. Power line noise (60Hz)
and harmonics were removed with a 2nd order IIR notch
filter. The continuous MEG signals were epoched into trials
centered on stimulus onset. Via thorough visual inspection,
trials containing high amplitude artifacts and trials in which
the subject did not comply with the paradigm timing e.g.,
‘subject spoke before the cue to articulate’, were discarded
with an average of 25% rejection rate. Flat and noisy
channels were also removed from the analysis.

III. METHODS

A. Decoding

We used linear discriminant analysis (LDA) for classifi-
cation of the preprocessed gradiometer and magnetometer
signals corresponding to the 5 phrases. LDA is a supervised
machine learning classifier that computes the directions
(‘linear discriminants’) that maximize the separation between
multiple classes [21]. In our previous decoding studies with
gradiometer signals, we found that LDA performs equiva-
lently to support vector machines and multilayer perceptron
classifiers [14] and better than naive Bayes, decision trees,
ensembles, and k-nearest neighbor classifiers specifically to
the data used in this study [22]. Moreover, considering the
relatively fast training procedure and few hyperparameter
tuning for this decoder, we chose LDA as our choice of
decoder. We extracted the root mean square (RMS) features
from the MEG signals to train the decoder as RMS fea-
tures have been proven effective in MEG and EEG based
decoding analyses [16], [23], [24]. The feature dimension
was about 204 for gradiometers and 102 for magnetometers.
The hyperparameters (alpha and beta parameters of the
Dirichlet distribution) of the classifier were tuned for each
subject and each task (imagination and production) with
Bayesian optimization. We performed a subject-dependent
decoding analysis considering the huge cognitive variance
across subjects [25]. We used 5-fold cross-validation for
classification and report the cross-validation accuracy.
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B. Wavelet Denoising

Since magnetometers have low SNR compared to gra-
diometers, we also investigated wavelet denoising and its
impact on decoding. Wavelets express a signal as a linear
combination of a distinct set of functions, obtained by
shifting and scaling a single function (mother wavelet) [26].
Wavelets decompose the signal in such a way that in each
level the signal disintegrates into two components (details
and approximation) such that the detail component carries the
high-frequency element whereas the approximation compo-
nent contains the low-frequency oscillations. Wavelets have
been a popular approach to denoise neural signals [27],
especially, in the case of MEG, the Daubechies (db4) wavelet
has been proven very effective for denoising [6], [24], [28].
Hence, here, we used db-4 discrete wavelet transform to
denoise the MEG signals. Please note, although the mo-
tivation behind using wavelets was to denoise the noisy
magnetometers, for a fair comparison, we performed wavelet
analysis on both gradiometer and magnetometer signals. We
optimized the level of decomposition from a range of levels
between 1 − 7 and selected the optimal level for a subject
based on the best validation accuracy.

IV. RESULTS AND DISCUSSIONS

Figure 3 shows the comparison of the decoding accuracy
between magnetometers and gradiometers for imagination
and production (articulation) tasks. With magnetometers,
prior to denoising, the decoding accuracy for imagination
was 42.67% ± 6.7% and for production, it was 60.22% ±
5.62%, both significantly higher than the theoretical chance
level (20%) for a 5-class classification. The decoding per-
formances with gradiometers for decoding spoken phrases
were statistically significantly higher (1-tail paired t-test)
than the magnetometers with an accuracy of 71.77%±5.96%.
This reconfirms the previous literature recommending gra-
diometers for sensor space analysis with MEG [29], [30].
For decoding imagined phrases, the accuracy was 43.59%±
7.73% with gradiometers but not significantly higher than
magnetometers. It is interesting to observe a significantly
higher performance of gradiometers during production than
imagination. This might be because of the differential design
of gradiometers that is advantageous in suppressing the
movement artifacts during production.

Our results show that that neural speech decoding is pos-
sible with the magnetometer sensors of SQUID-MEG. Op-
tically pumped magnetometers (OPMs) offer a new method
for MEG measurements [31]–[34]. The OPMs sensing mech-
anism happens above room temperature, hence sensor-source
gap is minimized and signal-to-noise ratio is maximized.
Furthermore, the design of OPM-MEG systems may include
synthetic gradiometers or reference sensors which can be
used to cancel out the inhibiting effect of environmental
interference [35] enhancing the decoding accuracy of the
overall BCI system. With this success of magnetometers
in speech decoding, we anticipate the potential usefulness
of the OPM technology in future speech-synthesizing BCI
systems. It should be noted that magnetometers have been
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Fig. 3. Comparison of decoding performances between magnetometers and
gradiometers, * denotes statistical significance with p < 0.05, error bars
indicate standard error

shown to perform equivalently to gradiometers in the source
space after proper denoising considering their ability to
record deeper neuromagnetic activity compared to gradiome-
ters [29], [36]. In this work, we are more focused on the
sensor space analysis as decoding has to be in real-time.
After wavelet denoising, the average decoding accuracy with
magnetometers increases about 2% for both imagination
and production which was significant across 7 subjects (1-
tail paired t-test, p < 0.05). However, the accuracy also
significantly improves for gradiometer based decoding anal-
ysis with a 3% increment. This further illustrates that the
gradiometers should be the default choice for SQUID-MEG
analysis in sensor space. It would be interesting to combine
both gradiometers and magnetometers to perform decoding
which is in the scope of our future work. Also, the efficacy
of wavelet denoising in decoding was evident.

V. CONCLUSIONS

In this study, we compared the decoding performance of
magnetometers and gradiometers in sensor space for decod-
ing 5 imagined and spoken phrases. Experimental results
indicated that magnetometers can be used to decode covert
and overt speech significantly higher than chance level. Gra-
diometers performed significantly better than magnetometers
reconfirming the previous literature supporting the preferred
use of gradiometers in sensor space analysis of SQUID-
MEG data. In addition, the efficacy of wavelets in denoising
MEG signals was demonstrated with an average of 2 − 3%
improvement in decoding accuracy.
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[13] Matti Hämäläinen, Riitta Hari, Risto J Ilmoniemi, Jukka Knuutila, and
Olli V Lounasmaa, “Magnetoencephalographytheory, instrumentation,
and applications to noninvasive studies of the working human brain,”
Reviews of modern Physics, vol. 65, no. 2, pp. 413, 1993.

[14] Debadatta Dash, Paul Ferrari, and Jun Wang, “Role of brainwaves in
neural speech decoding,” in 2020 28th European Signal Processing
Conference (EUSIPCO). IEEE, 2021, pp. 1357–1361.

[15] Johannes Gehrig, Michael Wibral, Christiane Arnold, and Christian
Kell, “Setting up the speech production network: How oscillations
contribute to lateralized information routing,” Frontiers in Psychology,
vol. 3, pp. 169, 2012.

[16] Debadatta Dash, Paul Ferrari, Satwik Dutta, and Jun Wang, “Neu-
roVAD: Real-time voice activity detection from non-invasive neuro-
magnetic signals,” Sensors, vol. 20, no. 8, pp. 2248, 2020.

[17] Negar Memarian, Paul Ferrari, Matt J Macdonald, Douglas Cheyne,
F Luc, and Elizabeth W Pang, “Cortical activity during speech
and non-speech oromotor tasks: A magnetoencephalography (MEG)
study,” Neuroscience letters, vol. 527, no. 1, pp. 34–39, 2012.

[18] Debadatta Dash, Paul Ferrari, and Jun Wang, “Decoding speech
evoked jaw motion from non-invasive neuromagnetic oscillations,” in
2020 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2020, pp. 1–8.

[19] Joachim Gross, Sylvain Baillet, Gareth R Barnes, Richard N Henson,
Arjan Hillebrand, Ole Jensen, Karim Jerbi, Vladimir Litvak, Burkhard
Maess, Robert Oostenveld, et al., “Good practice for conducting and
reporting MEG research,” Neuroimage, vol. 65, pp. 349–363, 2013.

[20] Ciaran Cooney, Raffaella Folli, and Damien Coyle, “Neurolinguistics
research advancing development of a direct-speech brain-computer
interface,” IScience, vol. 8, pp. 103–125, 2018.

[21] Geoffrey J McLachlan, Discriminant analysis and statistical pattern
recognition, vol. 544, John Wiley & Sons, 2004.

[22] Debadatta Dash, Paul Ferrari, Angel Hernandez, Daragh Heitzman,
Sara G Austin, and Jun Wang, “Neural speech decoding for amy-
otrophic lateral sclerosis,” Proc. Interspeech 2020, pp. 2782–2786,
2020.

[23] Lei Wang, Ed X. Wu, and Fei Chen, “Contribution of RMS-Level-
Based Speech Segments to Target Speech Decoding Under Noisy
Conditions,” in Proc. Interspeech 2020, 2020, pp. 121–124.

[24] Alborz Rezazadeh Sereshkeh, Robert Trott, Aurélien Bricout, and Tom
Chau, “EEG classification of covert speech using regularized neural
networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 12, pp. 2292–2300, 2017.

[25] Debadatta Dash, Paul Ferrari, and Jun Wang, “Spatial and spectral
fingerprint in the brain: Speaker identification from single trial MEG
signals.,” in INTERSPEECH, 2019, pp. 1203–1207.

[26] Ingrid Daubechies, Ten lectures on wavelets, SIAM, 1992.
[27] Zitong Zhang, Qawi K Telesford, Chad Giusti, Kelvin O Lim, and

Danielle S Bassett, “Choosing wavelet methods, filters, and lengths
for functional brain network construction,” PloS one, vol. 11, no. 6,
pp. e0157243, 2016.

[28] Elaheh Hatamimajoumerd and Alireza Talebpour, “A temporal neural
trace of wavelet coefficients in human object vision: an MEG study,”
Frontiers in neural circuits, vol. 13, pp. 20, 2019.
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