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Abstract— A pathology report is one of the most significant
medical documents providing interpretive insights into the
visual appearance of the patient’s biopsy sample. In digital
pathology, high-resolution images of tissue samples are stored
along with pathology reports. Despite the valuable information
that pathology reports hold, they are not used in any systematic
manner to promote computational pathology. In this work,
we focus on analyzing the reports, which are generally un-
structured documents written in English with sophisticated and
highly specialized medical terminology. We provide a compara-
tive analysis of various embedding models like BioBERT, Clin-
ical BioBERT, BioMed-RoBERTa and Term Frequency-Inverse
Document Frequency (TF-IDF), a traditional NLP technique,
as well as the combination of embeddings from pre-trained
models with TF-IDF. Our results demonstrate the effectiveness
of various word embedding techniques for pathology reports.

I. INTRODUCTION

Cancer is one of the leading causes of mortality in the
world. A computer-aided framework for cancer diagnosis re-
quires a pathologist to make a detailed report after analyzing
the tissue on glass slides collected from a patient’s biopsy
sample [1]. Pathology reports are made up of histopathologi-
cal indicators and detailed analysis of specific cells and tissue
types, which are essential for malignancy diagnosis. Most of
these reports are written in highly unstructured manner and
have no direct connection to the tissue samples. Also, each
patient’s report is a customized document having high dis-
crepancies in vocabulary, such as misspelled words and lack
of punctuation. It is common to find clinical diagnoses in-
termixed with nuanced explanations, multiple terminologies
used to mark the same malignancy and data about various
carcinomas in a single report [2]. Also, it may be possible
that some of the reports don’t have any relevant keywords
in them to directly identify the disease. Cancer registries are
facing a considerable challenge in the manual analysis of
the enormous quantity of pathology reports, with the rise in
the number of patients with cancer and the improvement in
treatment complexity [2], [3]. When primay diagnosis is not
clearly not mentioned, the process of identifying the disease
from a pathology report is challenging, time-consuming and
requires extensive training, when done manually [2]. This
paper demonstrates how to extract meaningful embeddings
from written pathology reports to help classify various types
of cancer. This may be used for multi-modal learning in
conjunction with histopathology images and molecular data.
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Our primary focus is to evaluate and compare the effec-
tiveness of existing machine learning methods for automatic
classification of a given pathology report to its respective
primary diagnosis. We demonstrate that contextualized word
embeddings combined with Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) feature vectors, when given as
inputs to a Deep Neural Network (DNN), can be an effective
method for classification, achieving 93.77% accuracy in our
study. Additionally, our experiments with digital pathology
reports will allow researchers to develop a versatile way of
extracting essential details from free-text pathology reports
which could benefit a variety of diagnostic tasks.

II. RELATED WORK

In the field of biomedical research, information extraction
using NLP spans from rule-based systems [4] down to
domain-specific systems using feature-based classification
[3], and to the recent deep networks for end-to-end feature
extraction and classification [2].

In case of classification tasks or retrieving specific features
from reports, successful studies in NLP for understanding
pathology reports have been reported [5]. The Cancer Text
Information Extraction System (caTIES) is a framework de-
veloped in a caBIG project [6], that focuses on the extraction
of key details from Surgical Pathology Reports (SPR) to
achieve high precision and recall. On the other hand, a
system named Open Registry [7] was able to filter out the
pathology reports having cancer specified in them, based on
the disease codes.

In 2010, the Automated Retrieval Console (ARC) [8],
was introduced, where machine learning models are used
to predict the degree of association of a given radiology
or pathology report to cancer. The performance of this
approach varied from F-measure of 0.75 for lung cancer
to 0.94 for colon cancer. However, this approach utilized
domain-specific rules, which may be disadvantageous when
working with a wide variety of pathology reports. Other
works have performed a classification of the pathology
reports by extracting the TF-IDF features [9]. The extracted
features were given as input to XGBoost, SVM and Logistic
Regression, where improved ensemble results were obtained
with XGBoost classifier. A large number of algorithms which
convert words to fixed-dimensional vectors which can be
used to preserve syntactic and semantic relationships in a
text corpus were introduced. These include word2vec [10]
and GloVe [11] which use co-occurrences of words in the
text and produce dense vectors such that words appearing
in similar contexts have similar word embeddings. Major
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improvements could be achieved in the NLP field came when
unsupervised model architectures were proposed to represent
words as a fixed dimensional dense vector [10], [12]. The
architectures were Continuous Bag of Words (CBOW) that
predicts the target word given the context and the Skip-gram
model, which predicts the context based on the target word.
Another major advance was BERT (Bidirectional Encoder
Representations from Transformers) [13], which improves
fine-tuning-based approaches by taking into account both left
and right context unlike the traditional algorithms which used
the left-to-right direction only.

III. METHODOLOGY

We now elaborate on our pathology reports dataset, data
pre-processing steps, pre-trained models and TF-IDF tech-
nique.

A. Understanding the Dataset

The data we use are a cleaned and processed subset of
the publicly available TCGA (The Cancer Genome Atlas)
[9]. We obtained a subset of approximately 1,960 pathology
reports describing the tissues of organs referred to as the
disease type, each report having 0 to 2500 words. The disease
type typically consists of totally seven classes, namely,
“Kidney Renal Papillary Cell Carcinoma”, “Kidney Renal
Clear Cell Carcinoma”, “Lung Adenocarcinoma”, “Lung
Squamous Cell Carcinoma”, “Testicular Germ Cell Tumors”,
“Kidney Chromophobe” and “Thymoma”.

B. Data Pre-processing

The main challenge in classification with Deep Neural
Networks using text data is transforming the data into a
clean format, which can be converted into numerical vectors.
Before initializing the data pre-processing step, all samples
consisting of empty documents were removed. Further, we
removed all bullet numbering, stop-words, and special-,
numeric-, or null-characters. Occurrences of spatial dimen-
sions of tumor or organ size were also standardized by
converting “l × b × h” cm into a single entity with no
spaces (i.e. as lxbxhcm).

After data pre-processing, we have performed the k-fold
cross validation on the data to estimate the performance of
the model on unseen data with k = 5.

C. Pre-Trained Models and TF-IDF

In this section, we describe several contextualized word
embedding models along with TF-IDF and their techniques
to convert text into vectors.

1) BioBERT: BioBERT [14] is an application of the
BERT-based model [13], which is popularly used in the
biomedical field. This model is obtained upon pre-training
the BERT base model on the biomedical corpus. We have
used BioBERT-v1.1 for our experiments, which was obtained
by pre-training BioBERT on PubMed database for 1M steps.
The vocabulary size of the model is 28,996, each having
768 features. The output text from the data pre-processing
step is tokenized using the BioBERT tokenizer which uses

WordPiece Tokenization [15] that breaks down a word into
multiple subwords belonging to the BERT vocabulary. For
example, the WordPiece tokenization of the word “peni-
cillin”, which will not be present in the vocabulary directly,
is split into the subwords, “pen”, “##i” and “##cillin”, which
are available in the BERT vocabulary. The tokenized words
are then fed to the classifier model for classification.

2) Clinical BioBERT: Clinical texts such as physician
notes have different linguistic features compared to non-
biomedical or general texts. This difference encouraged
the necessity for a specifically trained model for clinical
domain texts and Clinical BioBERT was introduced. Clinical
BioBERT [16] is initialized from BioBERT (BioBERT-Base
v1.0 + PubMed 200K + PMC 270K) and is trained on all
the MIMIC-III notes (880M words), which is a database
containing health reports of the ICU admitted patients at
the Beth Israel Hospital in Boston, MA. This data is used
to pre-train the model for 150k steps with batch-size set to
32. Like BioBERT, the vocabulary size of Clinical BioBERT
is also 28,996 tokens, each having 768 features following
WordPiece Tokenization. The processed data is tokenized
using the “Bioclinical BERT” tokenizer, which is then used
as input data to the classifier model.

3) BioMed-RoBERTa: BioMed-RoBERTa [17] is a re-
cent model initialized from RoBERTa-base, which is pre-
trained for 12.5K steps with a batch size of 2048 using 2.68M
scientific papers (7.55B tokens) from Semantic Scholar [18]
[19]. The vocabulary size of this model is 50,265 tokens
with 768 features, which is acquired using BPE (byte pair
encoding [20]) word pieces with \u0120 as the special
signaling character. The “biomed roberta base” tokenizer
from HuggingFace is used for tokenization.

4) Term Frequency-Inverse Document Frequency: Term
Frequency-Inverse Document Frequency(TF-IDF), is a met-
ric that specifies the significance of a given word to a
document in a document set. Term frequency is defined
as the frequency of a term in a document [21], whereas
Inverse Document Frequency (IDF) gives more importance
to words frequently found in a set of documents. By multi-
plying the number of times, a word appears in a document
(Term Frequency) and the number of times a word occurs
in several documents (Inverse Document Frequency), we
obtain a statistical measure which is used to evaluate words
based on their value among the rest of the terms. Therefore
each sentence should have a representation according to the
meaning of each word in the sentence.

IV. EXPERIMENTAL SETUP

In this section, we will discuss the experimental setup of
our analysis. Fig.1 depicts the deep neural network topology
we have used. The main purpose of this network is to
analyze the word embeddings as an initial investigation
for NLP in Digital Pathology. The proposed network can
be customised with one or two input layers, based on the
analysis. Firstly, the data is pre-processed and based on the
maximum length of tokens amongst all the pre-processed
reports, we chose 300 as the maximum length of each report.
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Fig. 1. Deep Neural Network Topology

To understand the effectiveness of each pre-trained models,
respective tokenizers of BioBERT, Clinical BioBERT and
BioMed-RoBERTa are used to tokenize the data. In the case
of TF-IDF, upon tuning, the pre-processed text is vectorized
with maximum features of 300 and a minimum threshold
value of 5. The tokenized data is then converted into an
array of vectors which is given as the input to the DNN.

Now, for the DNN having single input, the respective
token embeddings from the pre-trained word embedding
model or feature vectors from TF-IDF vectorization along
with their labels are passed to the classifier for training.
On the other hand, for the DNN having both pre-trained
word embeddings and TF-IDF feature vectors, both the token
embeddings and the feature vectors along with their labels
are given as input to the model having two input layers.

For analysing the contextualized word embedding models,
we have extracted the weights from the respective pre-
trained model’s word embedding layer. The weights are then
converted into an embedding matrix, which is initialized as
weights to the embedding layer in our DNN classifier.

The word embeddings obtained from the pre-trained model
tokenizer are passed through the Embedding Layer, followed
by the Bidirectional LSTM layer. On the other hand, the
TF-IDF feature vectors are passed through the dense layer
with “ReLU” activation function. The respective vectors
from both the layers are concatenated and are then passed
through the dense layer with “ReLU” activation function,
followed by a dropout layer with the dropout rate of 0.3.
The vectors are then finally sent to the output dense layer
having “softmax” activation function. The model is trained
using Adam optimizer with its default learning rate of 0.01
and “categorical cross-entropy” loss function is used. The
best vectorization method is decided based on the evaluation
metrics such as precision, recall, F1-Score and classification
accuracy, which are calculated as an average of all the 5
folds and the results obtained are mentioned in Section V.

V. RESULT ANALYSIS AND DISCUSSIONS

This section describes the quantitative results obtained by
our experiments which show that our approach of combining
contextualized word embeddings along with TF-IDF feature
vectors provides best results than the model with single input.
The results of experiments on vectorization techniques using
DNN classifier are as shown in the Table I.

TABLE I
EVALUATION OF VECTORIZATION METHODS FOR THE CLASSIFICATION

OF DISEASE TYPES WITH A DNN CLASSIFIER

Vectorization
Method

Precision Recall F1-Score Accuracy

BioBERT alone 0.76 0.78 0.76 79.76%
BioMed-RoBERTa
alone

0.83 0.84 0.83 81.03%

Clinical BioBERT
alone

0.80 0.81 0.81 81.29%

TF-IDF alone 0.81 0.78 0.79 88.90%
BioMed-RoBERTa
plus TF-IDF

0.90 0.93 0.91 90.58%

BioBERT plus TF-
IDF

0.88 0.92 0.90 91.65%

Clinical BioBERT
plus TF-IDF

0.91 0.92 0.91 93.77%

A. RESULTS

Table I compares the performance of various vectorization
methods for the disease type classification on the DNN
classifier on unseen data. Amongst the vectorization tech-
niques used, Clinical BioBERT embeddings in combination
with TF-IDF feature vectors yields the best accuracy of
93.77%, precision of 0.91, F1-score of 0.91 and recall of
0.92. The next best were the combinations of BioBert with
TF-IDF and BioMed-RoBERTa with TF-IDF. We believe
this is because the Clinical BioBERT embeddings obtained
using the BioBERT model were initially pre-trained on a
medical corpus and then further trained on clinical texts
with similar terminology, whose words are more likely to
appear in pathology reports. Also, TF-IDF vectorization
on these reports contributes to give important information
about the word distributions in a pathology report. Thus the
combination of them performed the best on our classification
model. A tedious and error prone task that is important in
this field is creating an embedding for cancer and tumor
detection phrases from any given pathology report.

Retrieving the disease type is one of the most critical
aspects of deciphering a pathology report, which will be very
useful while combining content-based image retrieval with
visual information. The accuracy obtained by these models
supports the use of machine learning techniques to extract
meaningful and relevant information from pathology reports.
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B. ABLATION STUDIES

The basic idea behind ablation is to remove certain com-
ponents from the experiment to understand the contribution
of that component towards the overall model. Our study
shows that model performance decreases to almost 80% upon
removing the TF-IDF vectorizer from the topology shown in
Figure 1. Thus, it is reasonable to say that TF-IDF helps to
identify the important medical terms in the pathology report.
Upon removing the pre-trained word embeddings from our
topology, the classification accuracy decreases to 88.90% as
compared to the overall accuracy of 93.77%. Thus, the pre-
trained model embeddings helps to improve the model due
to its abilities to interpret domain specific terminologies in
the biomedical field.

VI. CONCLUSIONS

In this paper, we examined the classification of pathology
reports of seven different diseases and reported several exper-
iments by evaluating the word embeddings of the pre-trained
models, TF-IDF vectorization technique and the combination
of both of them. We found that the combination of TF-
IDF with pre-trained model word embeddings was always
outperforming contextualised word embeddings and TF-
IDF when performed individually. The best performance for
pathology report classification was observed for the model
that concatenated the embeddings from Clinical BioBERT
with the TF-IDF vectors. This seems to form a reasonable
baseline and provides valuable insights in the future of digital
pathology report analysis.
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