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Abstract— Electroencephalography (EEG) is an effective and
non-invasive technique commonly used to monitor brain activity
and assist in outcome prediction for comatose patients post
cardiac arrest. EEG data may demonstrate patterns associated
with poor neurological outcome for patients with hypoxic injury.
Thus, both quantitative EEG (qEEG) and clinical data contain
prognostic information for patient outcome. In this study we
use machine learning (ML) techniques, random forest (RF) and
support vector machine (SVM) to classify patient outcome post
cardiac arrest using qEEG and clinical feature sets, individually
and combined. Our ML experiments show RF and SVM
perform better using the joint feature set. In addition, we extend
our work by implementing a convolutional neural network
(CNN) based on time-frequency images derived from EEG to
compare with our qEEG ML models. The results demonstrate
significant performance improvement in outcome prediction
using non-feature based CNN compared to our feature based
ML models. Implementation of ML and DL methods in clinical
practice have the potential to improve reliability of traditional
qualitative assessments for postanoxic coma patients.

I. INTRODUCTION

Over 550,000 North American adults suffer from cardiac
arrest every year causing sustained injuries such as hypoxic
ischemic encephalopathy (HIE). This condition has a high
mortality rate, and causes mental and physical health damage
to the patient and their families [1]. Despite advances in
care, prognostication remains a difficult task that may suffer
from inter-rater variability, necessitating the implementation
of objective methods in assigning a recovery prediction for
patients. Prognostic information can aid clinicians in select-
ing suitable treatment strategies and avoiding inappropriate
cessation or continuation of life sustaining treatments [2].

Quantitative electroencephalography (qEEG) describes the
algorithmic extraction of features from EEG data and may
convey prognostic information associated with the severity
of HIE and functional outcome. Past studies explore qEEG
features extracted from time and frequency domains (e.g.,
amplitude, entropy, frequency power spectra) and demon-
strate the importance of EEG background activity patterns
(e.g., continuity, amplitude fluctuations) [3], [4]. Only a small
number of studies leverage the advantages of information
contained in clinical data by its inclusion in the feature set for
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machine learning (ML). Such studies are generally limited
in the number of clinical variables available or are rarely
analyzed in conjunction with qEEG [5], [6].

Deep learning (DL) approaches learn representations of
data without relying on extracting predefined features, facil-
itating their use with raw biological signals such as EEG.
As such, DL models can learn patterns and characteristics
of the data essential to neurological outcome predictions
as an automated pipeline free of heavy feature engineering.
Amongst DL approaches, convolutional neural nets (CNNs)
are extensively studied for their application in image and
language processing and are used in many applications of
EEG such as seizure prediction and emotion recognition [7],
[8]. Since most of the information significant to clinical
outcomes lies in the frequency domain, these approaches
often convert the EEG signal to time-frequency domain spec-
trograms using short-time Fourier transform (STFT) which
slides a window along the time-series performing frequency
transformations to preserve the temporal characteristics of
the signal, creating pseudo-images especially suited for CNN
learning [7]. Despite the success of CNN models in various
applications of EEG, its implementation for HIE prognosis is
rare. Jonas et al. designed a CNN model for raw EEG signal
based prognostication in comatose patients [9]. Spectrograms
are commonly used for visual assessment and aid prognosti-
cation in clinical settings; to our knowledge, a spectrogram
based CNN has not been evaluated in coma prognostication.

Due to the drawbacks of qualitative analysis of EEG,
computer assisted interpretation can be used for a continuous
assessment of EEG capable of discriminating between pa-
tients with various neurological outcomes. Specialists review
clinical records along with EEG while determining prog-
nosis; to reflect clinical prognostication practices, we use a
unique combined dataset of qEEG and patient health records
to determine HIE prognosis using ML models: random forest
(RF) and support vector machine (SVM). Motivated by
recent advances in deep learning EEG analysis, as well as
lack of research in spectrogram based deep learning for HIE
prognosis, we take a novel approach by using a spectro-
gram based CNN, avoiding the need for explicit feature
engineering by using the intrinsic ability of the network to
learn from data. We demonstrate that by combining clinical
and qEEG features we improve the ability to predict patient
outcome. We also show that spectrogram based CNNs are
promising models for HIE prognostication that outperform
feature based machine learning models.

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 997



II. MATERIALS AND METHODS

A. Data and preprocessing

We use a retrospective cohort study utilising clinically ac-
quired routine EEG data for adults (male: 70, female: 31, age
range: 19-87 years) diagnosed with cardiac arrest between
January 2015 to September 2020 at the Kingston Health
Sciences Centre. EEG are recorded for approximately 20-30
minutes as early as possible following the arrest with 21 scalp
electrodes placed according to the 10-20 international system
of electrode placement protocol. Only EEGs recorded in the
first 8 days post arrest are used to reflect the typical time for
patients to be transferred from external centres without EEG
facilities for neuroprognostication. EEGs recorded during
therapeutic hypothermia or containing significant artifacts
through manual review are excluded and replaced with other
EEG recordings of the same patient if available. Clinical data
is collected retrospectively and ethics approval was obtained
from the Institutional Research Ethics Board.

Functional outcome of the patients is evaluated using the
Glasgow-Pittsburgh Cerebral Performance Category (CPC)
scale [10] and was assessed at a followup rehabilitation
appointment within 3-6 months. The CPC scores are di-
chotomized as 1-2 (good outcome, n=21) denoting patient
survival post arrest with no more than moderate disability
and CPC 3-5 (poor outcome, n=80) indicating severe dis-
ability, coma, or death.

Each EEG is band-pass filtered (0.5-70 Hz) and converted
to an average referential montage where all electrodes ex-
cluding Fp1/Fp2 (eye blinks and eye movement artifacts)
are used for average rereferencing. For each EEG recording,
only the first clean 5-minute epoch is extracted for analysis.
Preprocessing is performed using EEGLAB software [11]
and MATLAB (Mathworks, MA, USA, R2019b).

B. Feature based prognosis of HIE

Extracted qEEG features and clinical features from med-
ical records are used to train RF and SVM models to
classify patient outcome. We extract 27 quantitative features
as reported previously in the literature [3], [4], [5] described
in Table I, and 9 clinical features: age, corneal and pupillary
reflex, somatosensory evoked potential (SSEP), anoxic find-
ing (CT, MRI), time from injury to EEG recording, cause
of cardiac arrest (substance induced, arrhythmia, respiratory
failure), type of cardiac arrest (ventricular fibrillation, pulse-
less electrical activity, ventricular tachycardia) and in/out of
hospital arrest. All qEEG features are calculated per channel
and averaged across channels to obtain a mean value per
feature.

qEEG time domain features such as signal voltage, and
standard deviation quantify statistical properties of the signal,
while entropy, generally used in studies analyzing depth of
anesthetics, represents the complexity and unpredictability of
the signal [12]. Frequency domain features are extensively
studied in outcome prediction problems; common features
include absolute and relative power of frequency bands [5].
Power spectral density of each frequency band is estimated

TABLE I: Extracted quantitative EEG features

Feature Description

Time domain (5)
Standard deviation Measure of signal variability
Shannon entropy Additive measure of signal stochasticity

Voltage spread Low signal amplitude (3 levels: <5µV,
<10µV, <20µV)

Frequency domain (18)
Median power Measure of variability
Absolute power Spectral power in delta (0.5-4 Hz),

theta (5-7 Hz), alpha (8-13 Hz), beta
(14-20 Hz)

Relative power Ratio between one band (delta-beta)
and total power

Relative power of bursts Spectral power of bursts (delta-beta)
Delta to alpha ratio Delta power / alpha power
Sub-band information Shannon entropy of each frequency

band (delta-beta)
EEG background (4)

Background continuity
index

Fraction of EEG not in suppression
(amplitudes<10 µV, >0.5 s)

Burst suppression
amplitude ratio

Ratio of SD of the signal outside
suppressions to that in suppressions

Number, length of bursts Statistical properties of bursts

using Welch’s averaged periodogram method with Hamming
window and 50% overlap.

Due to high class imbalance (1:4), synthetic minority
oversampling technique (SMOTE) [13] is used to increase
the size of the minority class (good outcome) (1:1) to ensure
the robustness and generalizability of results. Feature based
min-max normalization is applied prior to classification.
Parameter optimization of RF and SVM is conducted using
grid search. Sequential floating forward selection (SFFS) [14]
is used to select an optimal subset of features from the qEEG
and clinical dataset to be used by the model.

C. Spectrogram based prognosis of HIE

To explore HIE outcome prediction without feature engi-
neering, we propose the use of spectrograms and CNNs in
lieu of feature based ML models. Raw EEGs are converted
into spectrograms resembling a 2D image-like matrix con-
taining frequency and time axes. For one 5-minute epoch
available per patient, a sliding window length of 20 seconds
is used to extract time-frequency information with a resolu-
tion of 1 Hz. To emphasize the clinical importance of lower
frequencies and reduce the number of learnable parameters,
only frequencies between 1 - 35 Hz are kept. To overcome
the challenge of class imbalance we generate more spec-
trograms for the minority class by an increased overlapped
sampling of the epoch during spectrogram creation. This
is done by adjusting the overlap of the sliding window to
50% for poor outcome and 75% for good outcome (minority
class).

As shown in Fig. 1, our CNN consists of 3 convolutional
blocks (C1,2,3) each containing a convolutional layer with
batch normalization, ReLU activation, and average pooling.
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Fig. 1: Proposed convolutional neural network architecture depicting input and output dimensions, three convolutional blocks, and two fully connected layers

Batch normalization is added to increase the training stabil-
ity, and pooling is added to extract features. Following the
three convolutional blocks, we implement 2 fully connected
layers (FC1,2), the output layer employs softmax activation
function which exponentially normalizes the network outputs
to present them as probabilities corresponding to the out-
come classes. The model uses Adam optimizer, minimized
categorical cross-entropy for loss, and early stopping is set
to monitor validation loss. Our model is tuned with respect
to the parameters such as STFT window length and overlap,
learnable filters, hidden neurons, and layers.

The CNN classifies each spectrogram independently
meaning the model evaluates a probability vector for each
spectrogram indicative of poor outcome. However, since
each patient has multiple spectrograms created from the 5-
minute segment, the probability for an entire segment is
obtained by averaging the probabilities of all spectrograms
per patient. The 5-minute EEG segment is then classified as
poor outcome if the average probability is above 0.5.

D. Experiments and evaluation

We compare the use of (1) qEEG features only, (2) clinical
features only, and (3) the combination of both qEEG and
clinical features using ML models: RF and SVM. We also
compare the use of multichannel spectrograms as input to
a CNN classifer against our qEEG RF and SVM mod-
els. To evaluate our RFqEEG, RFclinical, RFqEEG+clinical,
SVMqEEG, SVMclinical, SVMqEEG+clinical, and CNN
models, we use a 5-fold cross validation with different
folding configurations (20 total models) to examine their
performance. A holdout test set containing 20 patients (2500
spectrograms for CNN) is used for evaluation. Receiver
operating characteristic (ROC) curves and area under ROC
(AUROC/AUC) are used to assess model performance.

III. RESULTS AND DISCUSSION

Table II shows performance metrics for RF, SVM and
CNN models. The ROC curves depicting the true positive vs.
false positive rates of the methods are in Fig. 2. According
to Table II, both machine learning models using either of
the feature schemes achieve high performance. However,
performance is further improved using a combined set of
qEEG and clinical features, SVM (AUC = 0.91) and RF
(AUC = 0.97).

Prior to model evaluation, SFFS is used to select features
best suited to improve the performance of the ML models.
The 10 most significant features, from the combined 35

TABLE II: Model Performances

Model Mean AUC (±
SD)

Sensitivity

SVMclinical 0.72 ± 0.03 0.81 ± 0.09
SVMqEEG 0.82 ± 0.05 0.95 ± 0.05
SVMqEEG+clinical 0.91 ± 0.04 0.90 ± 0.04
RFclinical 0.89 ± 0.02 0.87 ± 0.07
RFqEEG 0.86 ± 0.05 0.88 ± 0.03
RFqEEG+clinical 0.97 ± 0.03 0.93 ± 0.02
CNN 0.92 ± 0.03 0.83 ± 0.06

qEEG and clinical set, are selected that best contribute to
the model’s ability to predict clinical outcome. For Both
qEEG+clinical machine learning models, SFFS selects simi-
lar features. For clinical features, RF selects type of cardiac
arrest, SSEP and age, while SVM selects corneal reflex and
SSEP. SSEP reflects the cortical response elicited by appli-
cation of external stimuli, hence, its absence is associated
with poor outcome. Previous studies also found that the
absence of corneal reflexes post cardiac arrest is predictive
of poor outcome [15]. Patient age is also a significant factor
as younger groups are more likely to recover [10].

The RF model selects qEEG features such as Shannon
entropy, background continuity index, burst suppression am-
plitude ratio, and frequency features such as absolute delta
power, as well as theta, delta, and alpha relative band powers.
SVM selects Shannon entropy and frequency features such
as median power, absolute delta and theta power, relative
delta, theta, and alpha power as well as delta to alpha ratio
(DAR). Features of EEG background prove their importance
in numerous studies [3], [5]; consistently, studies find that
a continuous EEG background post cardiac arrest predicts
good outcome. Cortical synaptic activity (recorded by EEG)
is interrupted post cardiac arrest and return of a continuous
background indicates gradual recovery of synaptic activity. In
addition, the degree of amplitude fluctuations is a significant
predictor of poor outcome characterizing malignant patterns
such as burst suppressions and generalized periodic dis-
charges [3]. To provide an explanation, [3] suggests that an
increase in excitatory-inhibitory ratio due to prolonged peri-
ods of anoxia causes excitotoxicity, secondary cell death, and
subsequently poor outcome. Patients suffering from disorders
of consciousness with improved outcome show greater EEG
entropy than those with poor outcome, an increased entropy
illustrates the increased complexity of cortical networks
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(a) RF (b) SV M (c) CNN

Fig. 2: ROC curves and AUROC for models using 5-fold cross validation repeated four times (20 models). The blue line represents models with qEEG features, the red line
represents ROC with clinical features, and green line represents a combined qEEG and clinical feature ROC.

required to support mechanisms of consciousness [12].
Features of frequency domain are well established for clin-

ical prognosis [4], [5], [7]. EEG power is markedly affected
in patients with HIE; a shift in spectral power towards lower
frequencies is associated with prolonged comatose state and
poor neurological outcome. Increased alpha is associated
with good outcome and indicative of neural survival in
ischemic regions of the brain. An increased delta power is
seen in patients with poor outcome and reflects higher degree
of brain lesions and deafferented regions. DAR is used to
asses cortical ischemia with high DAR in patients with poor
outcome. One hypothesis states DAR indicates the volume
of brain tissue with pathophysiology [16].

Our results suggest that qEEG and clinical information
serve as critical prognostic tools of HIE and their combined
integration using ML outperforms our proposed individual
feature set models. Recent studies show deep learning models
prove new avenues for solving complex problems using EEG
data. The AUC of our CNN model (0.92) exceeds that of
RF (AUC = 0.86) and SVM (AUC = 0.82). Only a handful
of studies implement CNNs for prognosis of HIE comatose
patients. Jonas et al. achieves an AUC of 0.89 using raw EEG
signals with CNNs [9] . A major difference in our work is
the use of time–frequency information as input to our CNN
model outperforming our proposed ML models with qEEG
features. In contrast to feature based ML systems, a deep
learning model such as CNN can be utilized without the
need for a feature extraction strategy.

IV. CONCLUSION

In this paper, the performance analysis of machine learning
models, RF and SVM, in predicting HIE outcome is carried
out using a novel dataset combining qEEG and clinical
information to reflect clinical prognostication protocols. This
combinatorial approach outperforms models using individ-
ual feature types. The results of qEEG machine learning
models are compared to the proposed non-feature based
CNN. We show how the CNN architecture can be applied
to spectrograms derived from EEGs to predict HIE out-
come. The model achieves comparable accuracy to state-
of-the-art HIE outcome models as well as outperforming
our proposed qEEG ML models. This system of automatic
feature extraction is advantageous over manually crafted

feature approaches and can be further analyzed through the
integration of clinical data into the DL model.
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