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Abstract— Performing cross-subject emotion recognition
(ER) using electrocardiogram (ECG) is challenging, since inter-
subject discrepancy (caused by individual differences) between
source and target subjects (new subjects) may hinder the
generalization for new subjects. Recently, some ER methods
based on unsupervised domain adaptation (UDA) are proposed
to address inter-subject discrepancy. However, when being
applied for online scenarios with time-varying ECG, existing
methods may suffer performance degradation due to neglecting
intra-subject discrepancy (caused by time-varying ECG) within
target subjects, or need to re-train ER model, leading to
time-and resource-consuming. In the paper, we propose an
online cross-subject ER approach from ECG signals via UDA,
consisting of two stages. In a training stage, we propose to
train a classifier on a shared subspace with a lower inter-
subject discrepancy. In an online recognition stage, an online
data adaptation (ODA) method is introduced to adapt time-
varying ECG via reducing the intra-subject discrepancy, and
then online recognition results can be obtained by the trained
classifier. Experimental results on Dreamer and Amigos with
emotions of valence and arousal demonstrate that our proposed
approach improves the classification accuracy by about 12%
compared with the baseline method, and is robust to time-
varying ECG in online scenarios.

I. INTRODUCTION

Emotion recognition (ER) is an evolving direction in the
human-machine interaction [1]. In many real-life applica-
tions, to meet the real-time requirements, there is a need
to recognize emotions in an online manner. For example,
mastering a patient’s emotional state in time is helpful for
the psychiatrist to monitor the patient’s mental health status.
Electrocardiogram (ECG)-based ER has gathered increasing
attention due to the rapid development of inexpensive and
wearable ECG recording devices [2]–[5].

For ER using ECG, the individual differences make it
difficult to acquire a general ER model that can be across
subjects [6]. The individual differences (such as personality)
may cause a inter-subject discrepancy between source and
target subjects, which may hinder the generalization of ER
models for new subjects. The conventional method is to
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Fig. 1. Example showing inter-subject and intra-subject discrepancies. Be-
cause of individual differences, ECG morphology varies between subjects,
resulting in inter-subject discrepancy. Due to the nonstationarity of ECG,
ECG morphology varies with time, leading to intra-subject discrepancy.

develop a subject-dependent model which trains a new model
for a new subject using labeled data [2], [7], yet labeled data
is costly to collect [8], [9].

Recently, some ER methods proposed to address inter-
subject discrepancy by unsupervised domain adaptation
(UDA), which personalized a general ER model for new
subjects in an unsupervised way with knowledge transfer
from source subjects [10]–[12]. For example, Zheng et
al. [10] suggested to exploit transfer component analysis
(TCA) [13] to learn a shared subspace where the difference
between subjects is reduced. In this way, only unlabeled
data are required for target subjects. These methods mainly
focus on offline scenarios where target data are collected
in advance. However, existing methods neglect the data
discrepancy within target subjects when being applied for
online scenarios, which may lead to performance degradation
in online ER scenarios using ECG signals.

In many real world applications, ECG signals often arrive
in an online way, and ECG signals are time-varying [14]
due to the nonstationary nature which may result in a intra-
subject discrepancy between incoming ECG and previous
ECG from a same target subject. Thus, in online cross-
subject ER, apart from the inter-subject discrepancy between
subjects, there is a intra-subject discrepancy within a same
target subject, as shown in Fig. 1. As a result, the intra-
subject discrepancy may hinder the generalization of ER
model for online scenarios.

Only a few methods [15] considered both inter-and intra-
subject discrepancies in online scenarios. Chai et al. [15]
proposed an UDA method (adaptive subspace feature match-
ing, ASFM) to reduce the inter-subject discrepancy and
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handle the intra-subject discrepancy by re-training a new
ER model periodically. However, re-training model may be
time-consuming and resource-consuming, which may limit
the applications of ER model in the real world.

In this paper, a method for ECG-based online cross-
subject ER is proposed via jointly reducing inter-subject and
intra-subject discrepancies, consisting of two stages. In a
classifier training stage, UDA is exploited to reduce inter-
subject discrepancy by projecting source and target data into
a shared subspace where a classifier can be trained. In an
online recognition stage, online data adaptation (ODA) is
first introduced to reduce intra-subject discrepancy, and then
online ER results can be obtained by the trained classifier.
The contributions of this work can be summarized as follows.
• An online cross-subject ER approach using ECG is

proposed. Compared with previous works which may
suffer a decline in performance due to neglecting intra-
subject discrepancy or need to re-train a new classifier
in online scenarios, our approach can adapt to time-
varying ECG to ensure the online ER performance.

• The intra-subject discrepancy is introduced to represent
the nonstationary nature of ECG in online ER using
ECG. To reduce the intra-subject discrepancy, an ODA
strategy is proposed to minimize the discrepancy within
a same subject.

• Experiments results on datasets of Dreamer [2] and
Amigos [4] proved that the proposed approach can
achieve better performance than previous methods and
is robust to the intra-subject discrepancy.

II. METHODS

Fig. 2 shows the framework of the proposed approach. The
training stage is to build an ER classifier for a target subject.
UDA is to reduce inter-subject discrepancy, obtaining a
shared subspace where a classifier can be trained. The online
recognition stage is to adapt to time-varying ECG via ODA,
and make recognition for transformed online data (obtained
by ODA) using the trained classifier.

A. Training stage

The training stage is used to construct an ER classifier
for a target subject, consisting of two steps, namely UDA-
based subject transfer used for reducing the inter-subject
discrepancy, and classifier training used to train a classifier.

1) UDA-based subject transfer: This part is to exploit
UDA to alleviate the inter-subject discrepancy by learning
a shared subspace between source subjects (source domain)
and a target subject (target domain). Fig. 3(a) shows that
the data distribution of two domains can be aligned in a
shared subspace. UDA algorithm, namely balanced domain
adaptation (BDA) [16], is chosen because it can minimize
both marginal and conditional distribution discrepancies.

Here, we let Xs ∈ Rm×ns and Xt
r ∈ Rm×nt denote the

ECG recordings in source and target domain respectively,
where ns and nt denote the number of source and target
samples respectively, and m is the number of ECG features.
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Fig. 2. The framework of our proposed online cross-subject ER from ECG
arriving in an online manner.

Pr ∈ Rm×d is a projection matrix to map two domains into
a shared subspace.

BDA [16] is to minimize the discrepancy between source
ECG data and target ECG data, as follows:

min
Pr

tr
(

PrX
(
(1−θ)M0+θ

C
∑

c=1
Mc

)
XTPr

)
+λ ‖Pr‖2

F

s.t. Pr
TXHXTPr = I,0≤ θ ≤ 1,

(1)
where θ is balance factor, and λ is regularization parameter
with ‖F‖2 being the Frobenius norm, C is the number of
emotion categories. X is composed of source data Xs and
initial target data Xt

r, and Pr is a projection matrix, and
I ∈ Rd×d is the identity matrix, and H ∈ R(ns+nt )×(ns+nt )

is the centering matrix, and M0 and Mc are Maximum
Mean Discrepancy (MMD) matrices [17] of marginal and
conditional distribution. Pr can be obtained by finding the d
smallest eigenvectors of the equation:(

X

(
(1−θ)M0+θ

C

∑
c=1

Mc

)
XT+λ I

)
Pr=XHXTPrΦ, (2)

where Φ denotes the Lagrange multiplier, d is the dimension
of a shared subspace. The details of solving equation(1) to
obtain Pr can refer to the reference [16].

Using Pr, the source data Xs are transformed into a shared
subspace, obtaining aligned source data Zs ∈ Rd×ns (Zs =
Pr

TXs). And aligned initial target data Zt ∈ Rd×nt can be
obtained by Zt = Pr

TXt
r.

2) Classifier training: This part is to train a classifier
based on the aligned source data Zs. The classifier we
chose is support vector machine (SVM) with a Radial Basis
Function (RBF) kernel in the package of sklearn with default
parameter. We denote the trained classifier by f . Using f ,
we can classify the aligned initial target data Zt , obtaining
the emotion state of initial target data.

B. Online recognition stage

The stage aims to make recognition for incoming ECG
data, consisting of ODA used to adapt to time-varying ECG
by reducing intra-subject discrepancy, and online recognition
used to recognize the online data using the classifier f .

1) Online data adaptation: The aim is to adapt to time-
varying ECG by alleviating the intra-subject discrepancy. As
shown in Fig. 3, although Pr can be used to map incoming
data into the shared subspace, there may be a difference for
online data and initial data in the subspace. In specific, some
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Fig. 3. The principles of UDA-based subject transfer and ODA. (a) the
subspace obtained by UDA. (b) a classifier f for the target subject. (c)
online data after using Pr . (d) the online data after ODA. (e) transformed
online data can be classified by f .

online data with a certain category may be far from the initial
samples of the corresponding category. As a result, the online
data may be misclassified by trained classifier f .

Before introducing ODA, some variables are defined.
Denote xt

i ∈ Rm×nc by incoming recordings (i = 1, . . . ,N, N
is number of batches of online data), where nc denotes the
number of online data at each batch. Besides, Pi ∈ Rd×d

is a projection matrix to project the subspace of incoming
data xt

i into the subspace of initial data, where d denotes the
dimension of a shared subspace.

To address intra-subject discrepancy, an ODA strategy is
designed to align incoming data and initial data. In specific,
the subspace (zi ∈Rd×nc ) of online data is projected onto the
subspace Zn ∈Rd×n (related to Zt ) of initial data, obtaining
transformed data zn

i closer to initial data. Here we compute
zi of and Zn as follows: zi = PT

r xt
i . Zn is obtained by

updating the subspace Zt (Zt = Pr
TXt

r). Zt is updated to
make the category proportion in the online data and initial
data close to avoid negative transfer due to the difference in
the proportion. First, the initial classification of online data is
obtained based on Pr and f ; then the category proportion in
online data is computed; finally, some samples are selected
from Zt according to the proportion, obtaining an updated
subspace Zn related to initial data.

The ODA strategy is mainly composed of three steps. First,
we define a projection matrix Pi ∈Rd×d used to align zi and
Zn, expressed as:

Pi = σPc + I, (3)

where Pc ∈ Rd×d denotes the projection matrix used to
project zi onto Zn, I ∈ Rd×d is the identity matrix, σ is to
alleviate negative transfer.

Then, to obtain Pc, Correlation Alignment (CORAL) [18]
is used to align the second-order statistics (covariance)
between zi and Zn, which is chosen due to its simplicity
and efficiency.

Finally, using the online projection matrix Pi, zi can be
projected onto Zn, getting the online data zn

i closer to initial
target data, expressed as follows:

zn
i = Pizi. (4)

2) Online recognition: Based on the classifier f obtained
in the training stage, we can classify the online ECG data
zn

i , obtaining the emotion state of current online ECG data
by pi = f (zn

i ), where pi is the predicted emotion state.

III. EXPERIMENTS SETUP

A. Datasets description

The proposed approach is evaluated using two datasets of
Dreamer [2] containing 23 subjects, and Amigos [4] contain-
ing 40 subjects. In the paper, we focus on two binary tasks:
negative/positive valence, low/high arousal, where valence
represents the emotion is positive (such as glad, excited
and satisfied) or negative (such as angry, sad and afraid),
and arousal means the emotional intensity is low (such as
sleepy and relaxed) or high (such as excited and amused).
For Amigos, 4 subjects with lots of nan ECG value are
eliminated. We divide ECG signal into time windows with a
time window of W seconds to increase the amount of data,
where a longer time window with W of 30 seconds is set to
ensure sufficient emotional information in a time window.

B. Feature extraction

In this part, we introduce extracted ECG features. Some
features that are proven to be related with emotions are
extracted [19]. The extracted features are from time-domain
features (related to heart rate variability, heart rate [20]
and R-R intervals), frequency-domain features (in different
frequency ranges of ECG signals), and nonlinear features
(Poincaré-related, approximate entropy and Multiscale en-
tropy at 5 levels [21]). The detailed introduction of the
extracted features can refer to [19]. Note that, although a
lot of features are extracted, feature selection is not adopted,
since domain adaptation covers part of the function of feature
selection. In specific, domain adaptation is to transform
the original data into a shared subspace in order to find
significant and domain invariant features, and feature section
is to select siginificant features from original features.

C. Evaluation details

We adopt leave-one-subject-out for evaluation, where one
subject is used as target domain and the other subjects are
used as source domain. The target data is randomly divided
into initial data and online data, where initial data accounts
for half of all target data, and the other half was divided into
different batches. The online data are arriving sequentially in
a small batch at a time. Besides, to ensure the performance
of UDA, the initial data consists of all categories.

IV. EXPERIMENTAL RESULTS

In this part, we carry out experiments to demonstrate
the effectiveness of our proposed online cross-subject ER
method. In our experiments, the baseline method is SVM.
In addition, our proposed approach is compared with some
UDA-based ER approaches, including seven UDA meth-
ods: joint probability distribution adaptation (JPDA) [22],
Transductive SVM (TSVM) [23], kernel principle analysis
(KPCA) [24], selective pseudo-labeling (SPL) [25], ASFM
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TABLE I
VALENCE CLASSIFICATION ON DREAMER. ACCURACY COMPARISON OF SVM (BASELINE), SOME UDA METHODS, AND OUR PROPOSED APPROACH.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 Ave(std)
SVM 0.59 0.72 0.73 0.47 0.66 0.53 0.44 0.70 0.53 0.57 0.42 0.64 0.65 0.56 0.47 0.56 0.51 0.55 0.63 0.63 0.67 0.56 0.45 0.58(0.09)

JPDA [22] 0.56 0.72 0.76 0.64 0.51 0.54 0.49 0.58 0.57 0.66 0.50 0.61 0.75 0.52 0.56 0.68 0.54 0.53 0.69 0.66 0.50 0.46 0.40 0.58(0.09)
TSVM [23] 0.58 0.73 0.73 0.47 0.67 0.51 0.45 0.68 0.55 0.60 0.41 0.65 0.69 0.55 0.48 0.57 0.52 0.55 0.65 0.63 0.66 0.57 0.41 0.58(0.09)
KPCA [24] 0.52 0.67 0.73 0.64 0.57 0.50 0.50 0.50 0.53 0.70 0.42 0.57 0.75 0.61 0.56 0.50 0.55 0.60 0.77 0.68 0.72 0.67 0.42 0.59(0.10)
SPL [25] 0.56 0.63 0.58 0.64 0.72 0.48 0.55 0.79 0.57 0.64 0.46 0.64 0.65 0.57 0.56 0.52 0.57 0.62 0.65 0.71 0.78 0.59 0.36 0.60(0.10)

ASFM [15] 0.50 0.52 0.47 0.54 0.53 0.56 0.52 0.45 0.49 0.50 0.46 0.46 0.57 0.51 0.51 0.48 0.53 0.49 0.65 0.47 0.53 0.52 0.47 0.51(0.04)
TCA [13] 0.53 0.68 0.76 0.59 0.73 0.47 0.61 0.80 0.59 0.73 0.45 0.68 0.80 0.63 0.55 0.64 0.52 0.63 0.83 0.70 0.74 0.72 0.47 0.65(0.11)
JDA [26] 0.59 0.68 0.78 0.57 0.70 0.49 0.61 0.79 0.57 0.73 0.41 0.60 0.80 0.63 0.43 0.62 0.57 0.64 0.83 0.68 0.72 0.70 0.44 0.63(0.12)
BDA [16] 0.62 0.73 0.76 0.64 0.72 0.60 0.61 0.80 0.63 0.70 0.58 0.61 0.75 0.61 0.56 0.67 0.54 0.63 0.78 0.71 0.72 0.70 0.56 0.66(0.08)
Proposed 0.71 0.82 0.79 0.69 0.77 0.65 0.70 0.84 0.63 0.79 0.65 0.69 0.86 0.70 0.58 0.70 0.56 0.67 0.88 0.72 0.74 0.74 0.62 0.72(0.08)

TABLE II
AROUSAL CLASSIFICATION ON DREAMER. ACCURACY COMPARISON OF SVM (BASELINE), SOME UDA METHODS, AND OUR PROPOSED APPROACH.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 Ave(std)
SVM 0.53 0.40 0.56 0.71 0.54 0.58 0.31 0.62 0.77 0.65 0.67 0.57 0.47 0.61 0.64 0.68 0.62 0.60 0.60 0.60 0.78 0.45 0.56 0.59(0.11)

JPDA [22] 0.57 0.51 0.52 0.27 0.48 0.68 0.50 0.60 0.73 0.50 0.68 0.67 0.43 0.53 0.45 0.42 0.55 0.51 0.44 0.42 0.68 0.70 0.62 0.54(0.11)
TSVM [23] 0.55 0.37 0.62 0.72 0.57 0.62 0.44 0.56 0.44 0.47 0.74 0.53 0.52 0.54 0.59 0.58 0.62 0.55 0.53 0.55 0.60 0.51 0.55 0.56(0.08)
KPCA [24] 0.48 0.51 0.54 0.27 0.54 0.66 0.49 0.68 0.50 0.74 0.68 0.54 0.60 0.50 0.51 0.42 0.49 0.66 0.61 0.67 0.54 0.71 0.46 0.56(0.11)
SPL [25] 0.48 0.43 0.43 0.27 0.54 0.42 0.22 0.58 0.23 0.60 0.66 0.41 0.48 0.42 0.49 0.67 0.59 0.68 0.47 0.45 0.56 0.14 0.59 0.47(0.14)

ASFM [15] 0.57 0.48 0.44 0.42 0.48 0.49 0.40 0.45 0.62 0.55 0.46 0.44 0.46 0.62 0.51 0.55 0.16 0.49 0.53 0.42 0.36 0.47 0.61 0.48(0.10)
TCA [13] 0.44 0.57 0.58 0.58 0.66 0.45 0.52 0.80 0.49 0.69 0.45 0.48 0.80 0.63 0.46 0.57 0.55 0.63 0.85 0.68 0.64 0.68 0.47 0.60(0.12)
JDA [26] 0.62 0.40 0.59 0.65 0.55 0.68 0.45 0.68 0.64 0.68 0.72 0.55 0.56 0.64 0.59 0.65 0.56 0.70 0.59 0.52 0.61 0.72 0.55 0.61(0.08)
BDA [16] 0.66 0.60 0.60 0.75 0.54 0.71 0.41 0.71 0.70 0.76 0.74 0.67 0.61 0.66 0.68 0.84 0.74 0.73 0.82 0.63 0.71 0.78 0.52 0.68(0.10)
Proposed 0.67 0.61 0.60 0.76 0.60 0.71 0.58 0.75 0.70 0.83 0.82 0.72 0.62 0.76 0.69 0.84 0.77 0.73 0.83 0.67 0.72 0.75 0.64 0.71(0.09)

TABLE III
VALENCE CLASSIFICATION ON AMIGOS. ACCURACY COMPARISON OF SVM (BASELINE), SOME UDA METHODS, AND OUR PROPOSED APPROACH.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 s36 Ave (std)
SVM 0.44 0.70 0.59 0.55 0.52 0.68 0.61 0.66 0.55 0.53 0.39 0.65 0.49 0.65 0.49 0.56 0.54 0.69 0.47 0.59 0.57 0.77 0.61 0.52 0.38 0.71 0.77 0.74 0.31 0.74 0.49 0.59 0.52 0.64 0.59 0.69 0.58(0.11)

JPDA [22] 0.56 0.67 0.63 0.49 0.61 0.54 0.66 0.64 0.41 0.58 0.58 0.65 0.53 0.51 0.42 0.54 0.57 0.61 0.56 0.57 0.53 0.53 0.61 0.51 0.67 0.62 0.61 0.74 0.44 0.57 0.52 0.58 0.59 0.59 0.69 0.60 0.58(0.07)
TSVM [23] 0.45 0.67 0.59 0.71 0.56 0.67 0.59 0.57 0.63 0.53 0.64 0.67 0.51 0.43 0.57 0.49 0.64 0.67 0.49 0.58 0.57 0.57 0.57 0.53 0.48 0.63 0.50 0.77 0.28 0.65 0.48 0.53 0.57 0.52 0.57 0.74 0.57(0.09)
KPCA [24] 0.49 0.61 0.63 0.72 0.61 0.76 0.63 0.41 0.61 0.53 0.58 0.68 0.50 0.44 0.57 0.68 0.68 0.66 0.54 0.64 0.62 0.62 0.63 0.57 0.67 0.67 0.57 0.86 0.67 0.71 0.43 0.58 0.48 0.49 0.59 0.59 0.60(0.09)
SPL [25] 0.43 0.67 0.70 0.49 0.61 0.70 0.67 0.52 0.41 0.45 0.81 0.64 0.54 0.50 0.47 0.50 0.68 0.66 0.60 0.58 0.41 0.52 0.65 0.53 0.52 0.62 0.57 0.57 0.46 0.57 0.49 0.54 0.58 0.55 0.56 0.64 0.57(0.09)

ASFM [15] 0.48 0.45 0.63 0.52 0.58 0.63 0.50 0.41 0.47 0.18 0.56 0.54 0.62 0.46 0.53 0.62 0.68 0.60 0.44 0.52 0.49 0.68 0.65 0.50 0.43 0.51 0.27 0.57 0.51 0.45 0.52 0.47 0.51 0.48 0.60 0.49 0.51(0.10)
TCA [13] 0.55 0.63 0.67 0.76 0.56 0.77 0.59 0.52 0.71 0.51 0.67 0.64 0.51 0.65 0.60 0.60 0.57 0.69 0.58 0.59 0.54 0.80 0.67 0.54 0.67 0.66 0.55 0.83 0.72 0.78 0.49 0.57 0.55 0.65 0.63 0.66 0.63(0.09)
JDA [26] 0.53 0.66 0.63 0.82 0.56 0.73 0.60 0.52 0.68 0.52 0.67 0.64 0.51 0.66 0.58 0.63 0.61 0.69 0.59 0.58 0.62 0.80 0.65 0.54 0.67 0.67 0.55 0.83 0.69 0.80 0.57 0.59 0.55 0.64 0.65 0.67 0.64(0.08)
BDA [16] 0.59 0.72 0.67 0.79 0.56 0.77 0.69 0.70 0.71 0.72 0.64 0.64 0.57 0.65 0.53 0.62 0.61 0.70 0.61 0.64 0.62 0.83 0.67 0.58 0.67 0.68 0.70 0.83 0.77 0.77 0.57 0.60 0.55 0.65 0.65 0.79 0.67(0.08)
Proposed 0.61 0.81 0.70 0.85 0.64 0.77 0.76 0.80 0.71 0.76 0.67 0.66 0.59 0.76 0.61 0.65 0.68 0.73 0.63 0.64 0.63 0.87 0.70 0.63 0.67 0.73 0.82 0.89 0.79 0.80 0.59 0.60 0.61 0.65 0.65 0.77 0.71(0.08)

TABLE IV
AROUSAL CLASSIFICATION ON AMIGOS. ACCURACY COMPARISON OF SVM (BASELINE), SOME UDA METHODS, AND OUR PROPOSED APPROACH.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 s36 Ave
SVM 0.54 0.39 0.66 0.85 0.52 0.47 0.67 0.55 0.57 0.63 0.81 0.69 0.65 0.61 0.60 0.58 0.66 0.23 0.58 0.55 0.57 0.68 0.59 0.67 0.52 0.50 0.65 0.57 0.70 0.59 0.64 0.73 0.70 0.50 0.51 0.60 0.59(0.11)

JPDA [22] 0.41 0.32 0.50 0.87 0.57 0.47 0.76 0.41 0.48 0.05 0.58 0.49 0.77 0.26 0.27 0.60 0.50 0.34 0.38 0.42 0.29 0.74 0.45 0.52 0.69 0.52 0.56 0.58 0.50 0.49 0.51 0.50 0.52 0.66 0.51 0.44 0.50(0.16)
TSVM [23] 0.56 0.32 0.67 0.83 0.51 0.47 0.62 0.57 0.48 0.63 0.77 0.76 0.48 0.30 0.55 0.53 0.71 0.23 0.62 0.47 0.57 0.59 0.64 0.63 0.52 0.44 0.65 0.66 0.65 0.45 0.59 0.79 0.57 0.34 0.49 0.53 0.56(0.13)
KPCA [24] 0.48 0.32 0.67 0.72 0.57 0.38 0.74 0.63 0.53 0.58 0.92 0.62 0.61 0.26 0.53 0.63 0.75 0.14 0.47 0.50 0.19 0.74 0.48 0.65 0.31 0.40 0.66 0.62 0.59 0.42 0.75 0.81 0.93 0.53 0.39 0.44 0.55(0.18)
SPL [25] 0.52 0.32 0.68 0.92 0.43 0.26 0.74 0.47 0.31 0.37 0.69 0.76 0.68 0.17 0.26 0.58 0.61 0.11 0.48 0.65 0.24 0.56 0.50 0.41 0.62 0.56 0.62 0.63 0.65 0.38 0.64 0.83 0.56 0.42 0.39 0.47 0.51(0.18)

ASFM [15] 0.59 0.42 0.41 0.38 0.55 0.59 0.53 0.51 0.52 0.68 0.42 0.37 0.48 0.35 0.53 0.50 0.42 0.32 0.40 0.50 0.62 0.44 0.64 0.56 0.52 0.48 0.41 0.43 0.57 0.45 0.41 0.58 0.52 0.47 0.46 0.56 0.49(0.08)
TCA [13] 0.53 0.39 0.62 0.89 0.52 0.53 0.74 0.60 0.59 0.79 0.89 0.79 0.77 0.61 0.62 0.64 0.74 0.16 0.57 0.62 0.62 0.85 0.55 0.59 0.52 0.56 0.62 0.74 0.70 0.48 0.71 0.81 0.87 0.55 0.61 0.71 0.64(0.15)
JDA [26] 0.53 0.42 0.66 0.92 0.52 0.53 0.74 0.60 0.60 0.79 0.89 0.79 0.77 0.61 0.62 0.64 0.74 0.16 0.57 0.62 0.62 0.85 0.57 0.59 0.52 0.52 0.65 0.74 0.72 0.46 0.71 0.81 0.87 0.55 0.61 0.69 0.64(0.15)
BDA [16] 0.63 0.58 0.68 0.92 0.61 0.58 0.74 0.60 0.70 0.75 0.86 0.78 0.84 0.61 0.62 0.61 0.75 0.57 0.65 0.62 0.62 0.85 0.59 0.76 0.79 0.52 0.56 0.71 0.65 0.60 0.72 0.81 0.79 0.61 0.61 0.71 0.68(0.10)
Proposed 0.66 0.55 0.79 0.96 0.61 0.71 0.76 0.63 0.74 0.89 0.89 0.78 0.84 0.65 0.62 0.67 0.78 0.59 0.67 0.68 0.62 0.88 0.61 0.76 0.79 0.60 0.59 0.73 0.74 0.72 0.74 0.85 0.89 0.61 0.63 0.71 0.72(0.10)

[15], TCA [13], and joint distribution adaptation (JDA) [26].
To apply these UDA methods for ECG-based online ER,
SVM is used as the final classifier. Note that, TSVM, KPCA
and TCA are presented in one related ER work [10], and
ASFM is from the ER work in [15].

Table I to Table IV list accuracies on valence and arousal
recognition, where bold numbers represent optimal results.
From the four tables, we observe that:

• Our proposed approach improves the classification ac-
curacy by about 12% over SVM, indicating the ef-
fectiveness of the proposed approach. In addition, our
proposed approach performs better than other UDA
methods. Also, the tables give the performance of BDA
[16] which is the proposed without ODA. our proposed
method performed better than BDA, meaning the effec-
tiveness of the ODA, and the robustness of the proposed
method to time-varying ECG in online scenarios.

• TCA [13] and JDA [26] performed better than SVM,
indicating the benefit of the two methods to reduce
inter-subject discrepancy. Since both our method and
the two methods exploit MMD distance [17] to represent

Dreamer valence Dreamer arousal Amigos valence Amigos arousal
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Fig. 4. Comparison of F1-scores based on different methods.

the difference between two domains, the results suggest
that MMD-based methods may be effective for alleviat-
ing the inter-subject discrepancy in ECG-based ER. In
contrast, some UDA methods (JPDA [22], TSVM [23],
KPCA [24], SPL [25]) performed worse than SVM on
arousal classification, and ASFM [15] failed in most
cases, meaning that negative transfer may occur. The
reason may be that they can not adapt to the time-
varying nature of ECG.

Moreover, to better compare different methods, Fig. 4
gives the macro F1-scores (the average of score for both
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TABLE V
COMPARISONS OF OUR PROPOSED METHOD AND SOME EXISTING

ECG-BASED ER WORKS. - MEANS THAT THE RESULT IS NOT GIVEN.

model comparison Dreamer
valence

Dreamer
arousal

Amigos
valence

Amigos
arousal

subject
depedent
or cross-

subject model

online
or offline

ER
classification

schemes
Acc F1 Acc F1 Acc F1 Acc F1

Katsigiannis
et al. [2]

subject
depedent - SVM 0.62 0.53 0.62 0.58 - - - -

Miranda-
Correa

et al. [4]
cross-
subject - SVM - - - - - 0.55 - 0.55

Tung et al. [3] cross-
subject - XGBoost - - - - - 0.63 - 0.56

Proposed cross-
subject online

UDA +
online data

adaptation +
SVM

0.72 0.69 0.71 0.65 0.71 0.66 0.72 0.63

classes) of different methods. Fig. 4 shows that our method is
better than the other methods, again indicating the advantage
of our proposed method for online cross-subject ER using
ECG. Further, the running time of the online recognition
stage for our proposed method is computed based on the
environment using pycharm 2020 with an Intel core i5-
10400 2.90 GHz processor and 16 GB of RAM. The online
recognition of our method (feature extraction + ODA + SVM
classification) consumes 4.91 seconds, which is the latency
of the our emotion recognition algorithm. The number is less
than the arrival time of ECG data (30 seconds), which implies
that our proposed method can complete the classification
before the next batch of online data arrives, indicating the
practical value of the proposed method in real world applica-
tion scenarios. Besides, Table V lists the comparison of our
proposed approach and some existing ECG ER works [2]–
[4]. The table shows that our proposed approach outperforms
the methods of the other works, showing the benefits of our
proposed method.

V. CONCLUSION

In this paper, an approach for online cross-subject ER is
proposed, where ECG signals arrive in an online manner.
Unlike previous methods that may need to re-train ER model,
our proposed approach adopts UDA-based subject transfer
and ODA to reduce both inter-and intra-subject discrepancies
to ensure the performance of online cross-subject ER using
ECG. The experimental results have demonstrated the effec-
tiveness of the proposed approach, and the robustness to the
intra-subject discrepancy. In future works, we will exploit
deep learning-based feature extraction or transfer learning
techniques to further improve the performance.
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