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Abstract— Brain-Computer Interfaces are new technologies
with a fast development due to their possible usages, which
still require overcoming some challenges to be readily usable.
The paradigm of motor imagery is among the ones in these
types of systems where the pipeline is tuned to work with
only one person as it fails to classify the signals of a different
person. Deep Learning methods have been gaining attention
for tasks involving high-dimensional unstructured data, like
EEG signals, but fail to generalize when trained on small
datasets. In this work, to acquire a benchmark, we evaluate
the performance of several classifiers while decoding signals
from a new subject using a leave-one-out approach. Then we
test the classifiers on the previous experiment and a method
based on transfer learning in neural networks to classify the
signals of multiple persons at a time. The resulting neural
network classifier achieves a classification accuracy of 73% on
the evaluation sessions of four subjects at a time and 74% on
three at a time on the BCI competition IV 2a dataset.

I. INTRODUCTION

The recent development in brain-computer interfaces
(BCI) systems has allowed the identification of a range of
techniques for the efficient decoding of several paradigms
[1]. One of these is motor imagery, which refers to the
systems aiming to decode the patterns in the brain activity ex-
hibited when the subject is planning to execute a movement
[2]. The practical applications of these technologies allow
translating the activity into commands for systems that range
from healthcare applications, like a wheelchair or prosthesis,
to entertainment applications like video games [2].

While invasive methods have better resolution and less
noise [3], electroencephalography (EEG) is one of the most
common methods of acquisition of brain activity. EEG has
the advantages of an appropriate time resolution, the elec-
trode placement is flexible, and it does not require surgical
intervention to place the device as invasive methods like
electrocorticography (ECoG) [4].

A BCI pipeline is primarily composed of pre-processing
to clean the signal from noise, followed by calculation
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of features to characterize the recording and reduce the
dimension, and lastly a classification step to output the
correct command. Considering EEG signals as the input, the
signal filters are calculated for allowing the alpha (8-13 Hz)
and beta (13-35 Hz) waves as the related patterns occur in
this frequency bands [5].

Although using more data in machine learning tends
to increase performance, the current approaches on motor
imagery consider the subject-specific setup, thus limiting the
training samples when more than one subject is available.
Some explanations behind the inter-subject variability of
sensorimotor rhythms (SMR) can be found in [6]. The motor
learning process, brain function, and brain topology are some
of the causes that can differ from person to person, leading to
variability in the calculated features across different subjects.
In the work of [7], the variability among subjects is explored
with a pairwise inter-subject classification approach in the
BCI competition IV 2a dataset training with one person and
testing on another one. The best pair was for training on
subject 3 and testing on subject 9 with 57.99%. In [8] a
comparison of classifiers on the same dataset is done for the
intra and inter-subject classification tasks finding that there
is a low relationship (R2 = 0.153) to the performance of the
same classifier on both tasks.

An overview of techniques used on BCIs is described by
F. Lotte et. al. [9], along with their advantages and applica-
tions. The work also establishes a division of techniques as
classical machine learning approaches and new techniques
such as adaptive classifiers, matrix classification, and deep
neural networks.

In this paper, we first present feature extraction techniques
of common spatial patterns (CSP) and filter-bank common
spatial patterns (FBCSP), which have been used for the
motor imagery task in the proposed dataset, and also a
more recent approach based on Riemannian geometry. Then
explore some of the machine learning classifiers, which
are used as the last step to estimate the correct command,
and propose an experiment to measure how every subject
influences the classification to select candidates for multi-
subject classification. Finally, a deep learning approach with
the raw signals as the input is proposed to classify the signals
of multiple subjects, where the first layers were pre-trained
using autoencoders to reconstruct the signal.

II. METHODS
A. Data

The Berlin Brain-Computer Interface group has presented
challenges with their respective datasets related to different
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classification setups on these systems. The BCI competition
IV presented four challenges; a summary of these and the
winner’s solutions can be seen in [10]. Challenge 2 presents
two datasets 2a and 2b of motor imagery EEG signals with
ocular artifacts.

Dataset 2a is composed of 22 channels EEG recordings
of four classes recorded on nine subjects [11]. The classes
are left hand, right hand, tongue, and feet. Additionally,
they include three channels of electrooculography (EOG)
recordings to use noise reduction/suppression techniques
when the noise source is known as independent component
analysis (ICA). The recordings are split into two sessions
recorded on different days; they are referred to as training
and evaluation sessions. Each session has six runs, and each
run has 48 trials for a total of 288 (144 for each class).

B. Pre-processing

The first step of the pre-processing is frequency-based
filtering. In this case, the filters pass the frequency band
from 8 to 35 Hz. The proposed filters have a total 16th order
and a Butterworth response. As autoencoder architectures are
proposed for the pre-training of the classifiers, the signals
are scaled to fit within the range of the tanh activation
function while ignoring extreme values. The scaling sets the
5th percentile value to -1 and the 95th percentile as 1.

C. Feature Extraction

The feature extraction outputs a feature vector φ(X) ∈ Rd

to capture relevant information about the phenomena of
interest. It also reduces the dimensionality of the data, as
most of the machine learning approaches suffer from the
curse of dimensionality [9].

CSP calculates linear combinations of the channels that
maximize the variance of the signals of a class, and reduce
it for the others [12], [13]. Filter Bank CSP (FBCSP) filters
the EEG signal for a set of frequency ranges and applies
CSP to each one of the resulting signals [2].

Riemannian geometry is useful for the matrix-based clas-
sification as mentioned on [9]. In this case, the tangent space
approach maps the covariance matrices to a locally Euclidean
space where they can be represented by a vector [14].

D. Classification

Classifiers are functions of the form f : φ(X)→Y that map
the features φ(X) ∈RD to an estimated output y ∈Y . Linear
classifiers of the form ŷ = f (∑i βiφi(X)+β0) are the simpler
models where each feature φi(X) is weighted by a corre-
sponding βi parameter to produce a hyperplane [9], [15].
Linear discriminant analysis (LDA), support vector machines
(SVM) and logistic regressions (LR) are linear classifiers
with different fitting methods. Multi-layer perceptrons (MLP)
and random forest (RF) are non-linear classifiers that can
find more complex decision boundaries through ensambles
of functions [16], [17]. As the model complexity increases
it is easier to learn more complex patterns but also overfit to
the training data.

Classifier
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Fig. 1. Steps on the first experiment.

E. Deep Learning

Deep learning refers to neural network architectures with
many layers that process the input as multidimensional ten-
sors [9]. These layers process their inputs to benefit from the
spatial, like the convolutional layers (ConvNets), or temporal,
like the gated recurrent units (GRU), patterns of the data.
These architectures have been found useful for tasks with
unstructured data such as images or signals without the need
for feature extraction functions [5].

Autoencoders are deep learning architectures that learn
a compressed code through the encoder and learn how to
reconstruct the original input from this code. As this code
contains the information relevant to reconstruct the EEG
signal, the encoder can be used as a pre-trained architecture
that can be transferred to a classifier [5].

F. Experiments

1) Experiment 1: As stated before, the classification of
multiple subjects depends on the inter-subject associativity
among pairs [7]. In this work, we aim to limit the task to
classify the signals of three and four subjects. Ideally, it
is desirable to find the most compatible combinations for
each case, as there are 84 combinations of three subjects
and 126 of four. We limit this to use what we estimate to
the subjects that can be best classified with classifiers fitted
without signals of that subject.

The first experiment aims to measure the performance of
a tuned pipeline for a set of subjects when tested on a new
subject. For this, we tune a feature extraction function φk(X)
and a classifier fk(φ) using all the sample pairs (X t

i ,y
t
i) on the

training sessions for each subject except for one k subject.
The remaining subject’s evaluation session is then used as
the test set to measure how well their signals are classified
using the information from others.

To find the best parameters 5-fold cross-validation is
performed over a grid of the respective parameters for each
classifier and the number of filters when they use CSP. Once
that the best hyper-parameters are found, the classifier is
trained using the whole training set and is used to report
the training and test accuracy.

2) Experiment 2: In the second experiment, we use the
best three and four subjects from the previous experiment
to tune the feature extraction and classifiers functions and
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TABLE I
ACCURACY ON THE TRAIN SET FOR THE PROPOSED MODELS FOR THE

LEAVE-ONE-OUT TASK.

0.43 0.46 0.44 0.44 0.45 0.48 0.45 0.42 0.43

0.38 0.42 0.41 0.41 0.42 0.46 0.42 0.37 0.42

0.51 0.52 0.46 0.52 0.52 0.49 0.50 0.46 0.50

0.55 0.58 0.56 0.57 0.55 0.58 0.54 0.53 0.56

0.49 0.50 0.49 0.50 0.54 0.52 0.50 0.48 0.54

0.75 0.76 0.75 0.77 0.75 0.79 0.75 0.74 0.78

0.60 0.61 0.58 0.59 0.60 0.60 0.55 0.62 0.64

0.91 0.94 0.93 0.94 0.94 0.94 0.93 0.92 0.96

0.68 0.69 0.67 0.69 0.71 0.70 0.68 0.66 0.68

Train

M
et

ho
ds

CSP−LDA

CSP−SVM

CSP−RF

CSP−MLP

FBCSP−LDA

FBCSP−SVM

FBCSP−RF

FBCSP−MLP

Riem−LR

1 2 3 4 5 6 7 8 9

Subjects

Mean

0.5
0.6
0.7
0.8
0.9

Std

0.01
0.015
0.02
0.025
0.03

test on these subjects again. In this case, we report three
accuracies that are defined as follows:
• Train: The training sessions from the selected subjects.
• Test: The evaluation sessions from the selected subjects.
• Out: The remaining evaluation sessions.
The case of transfer learning differs as the autoencoder

can use the training sessions from all nine subjects as a pre-
training. To optimize the architecture for the autoencoder, a
set of candidate filter dimensions and the number of filters
per layer are proposed. To evaluate the architecture the
reconstruction error is measured as the mean squared error
(MSE) on the evaluation sessions. The final classifier uses
a combination of the number of layers transferred from the
autoencoder, the number of GRU cells, and the remaining
fully connected (FC) layers. The best architecture is validated
using a subset with 20% of the training set.

We also train the architecture with and without data
augmentation (DA) as described in [18] to randomly select
and crop a signal in the training set to have more sam-
ples. Additionally, noise from the EOG signals is randomly
cropped and added to the samples.

III. RESULTS
A. Leave-one-out

The results from the first experiment are on the tables I and
II for the training and test accuracy with all the subject-model
pairs. The overall mean of the training accuracy is 0.6 and
0.34 for the test accuracy. There are some instances where the
test accuracy is higher than the training accuracy, especially
in the cases with the highest test accuracy. This is expected as
the classifiers are trained to classify the signals from multiple
subjects but are tested only on one. The classifiers with the
best test accuracy (CSP-LDA, CSP-SVM, Riem-LR) are the
ones using linear classifiers.

The distributions of the accuracy of the models categorized
per each subject can be seen in Fig. 2, and are summarized
in the Table III. The reported p-value is calculated from a
one-side student’s t-test comparing the resulting accuracies

TABLE II
ACCURACY ON THE TEST SET FOR THE PROPOSED MODELS FOR THE

LEAVE-ONE-OUT TASK.

0.54 0.24 0.63 0.38 0.28 0.23 0.35 0.51 0.63

0.57 0.29 0.61 0.31 0.25 0.20 0.34 0.52 0.34

0.49 0.28 0.17 0.42 0.27 0.25 0.39 0.28 0.32

0.35 0.28 0.25 0.36 0.30 0.32 0.32 0.27 0.41

0.38 0.23 0.33 0.35 0.29 0.29 0.28 0.38 0.41

0.48 0.27 0.32 0.33 0.24 0.28 0.25 0.18 0.29

0.54 0.25 0.33 0.32 0.27 0.23 0.22 0.25 0.27

0.35 0.25 0.24 0.24 0.24 0.33 0.16 0.29 0.40

0.53 0.26 0.54 0.28 0.29 0.24 0.35 0.53 0.49

Test

M
et

ho
ds

CSP−LDA

CSP−SVM

CSP−RF

CSP−MLP

FBCSP−LDA

FBCSP−SVM

FBCSP−RF

FBCSP−MLP

Riem−LR

1 2 3 4 5 6 7 8 9

Subjects

Mean

0.25
0.3
0.35
0.4
0.45

Std

0
0.05
0.1
0.15
0.2

TABLE III
STATISTICS OF THE TEST ACCURACY FOR EACH SUBJECT ACROSS THE

CLASSIFIERS.

Subject 1 2 3 4 5 6 7 8 9

Average 0.47 0.26 0.38 0.33 0.27 0.26 0.30 0.36 0.40
STD 0.09 0.02 0.17 0.05 0.02 0.04 0.07 0.13 0.11
p-value 3.7e-5 0.08 0.02 7.7e-4 9.2e-3 0.17 0.058 0.021 2.2e-3

from that person to that of a random classifier (µ0 = 0.25)
considering the alternative hypothesis of a higher mean.
The best-found subjects are 1,9,3 and 8 according to their
resulting averages across the models and having a p-value
under 0.05.

B. Multi-subject classification

The results from this task are in Table V. The classifier
with the best accuracy is the transfer model architecture
with a test accuracy of 0.74 on the three subjects task and
0.73 on the four subjects. Using data augmentation on the
architecture did not improve the performance and resulted
in lower training and testing accuracy in both cases. Using
this methodology improves the classification compared to the
previous experiment with averages of 0.63 and 0.61 across all
the proposed classifiers. The results on the out accuracy are

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9
Subject

A
cc

ur
ac

y

Fig. 2. Distribution of the reported accuracies for each subject on
experiment 1. The dashed line is used as reference of a random classifier.
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TABLE IV
ARCHITECTURE USED FOR THE MULTI-SUBJECT CLASSIFICATION TASK.

Layer Units Kernel Size Activation Regularization

Conv 1D 32 16 ELUa BN(0.1)b

Conv 1D 64 12 ELU BN(0.1)
Conv 1D 128 12 ELU BN(0.1)
GRU 32 Linear Dropout(0.2)
FC 32 ELU Dropout(0.5)
FC 4 SoftMax

aELU: exponential linear unit
bBN: batch normalization

TABLE V
ACCURACY ON MULTI-SUBJECT CLASSIFICATION TASK.

1,3,9 1,3,8,9

Train Test Out Train Test Out

CSP-LDA 0.45 0.48 0.27 0.52 0.58 0.25
CSP-SVM 0.73 0.69 0.25 0.74 0.61 0.25
CSP-RF 0.64 0.52 0.25 0.62 0.51 0.25
CSP-MLP 0.66 0.59 0.25 0.73 0.64 0.25
FBCSP-LDA 0.72 0.65 0.25 0.68 0.57 0.25
FBCSP-SVM 0.91 0.71 0.25 0.90 0.68 0.25
FBCSP-RF 0.68 0.59 0.25 0.65 0.56 0.25
FBCSP-MLP 0.83 0.67 0.25 0.84 0.62 0.25
Riem+LR 0.75 0.71 0.25 0.76 0.69 0.25
Transfer Model 1.00 0.74 0.34 1.00 0.73 0.29
Transfer +DA 0.74 0.64 0.31 0.98 0.64 0.27

Average 0.74 0.63 0.26 0.74 0.61 0.25

those of a random classifier, except for the transfer models.
Those results may be explained as the training sessions from
all nine subjects were used for the autoencoder pre-training.

The final autoencoder has four layers of 1D convolutional
layers that filter through time. This architecture achieves
an MSE of 5.35 on the training sessions and 5.94 on the
test sessions. For the classifier, the best architecture took
three pre-trained layers from the encoder, followed by a
recurrent layer(GRU) and two more fully connected layers.
The training is stopped once that the validation accuracy
increases instead of decreasing. The architecture is detailed
in Table IV.

IV. CONCLUSION

In this work, we first introduced a benchmark of the classi-
fier’s performance to classify the signals of a specific subject
with parameters calculated with the rest of the subjects on
the dataset. The results show that the performance of the
classifiers depends upon the person. It has also demonstrated
that the features can classify the signals from subjects with
better performance than a random classifier but still with low
accuracy. From this test, we extracted potential candidates to
test the multi-subject classification task.

In the multi-subject classification, using data from all the
subjects to train an autoencoder and then transferring the
layers to a classifier helps to leverage the problem of training
a deep network with a small dataset using the raw signal as
the input. As the final tuning is performed with what we
found to be a limited set of candidate subjects, it achieves

accuracy similar to classifiers tuned for a single subject on
the four-class classification task and outperforms methods
that require feature extraction.
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