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Abstract— In contrast to previous studies that focused
on classical machine learning algorithms and hand-crafted
features, we present an end-to-end neural network classification
method able to accommodate lesion heterogeneity for improved
oral cancer diagnosis using multispectral autofluorescence
lifetime imaging (maFLIM) endoscopy. Our method uses
an autoencoder framework jointly trained with a classifier
designed to handle overfitting problems with reduced
databases, which is often the case in healthcare applications.
The autoencoder guides the feature extraction process through
the reconstruction loss and enables the potential use of
unsupervised data for domain adaptation and improved
generalization. The classifier ensures the features extracted
are task-specific, providing discriminative information for the
classification task. The data-driven feature extraction method
automatically generates task-specific features directly from
fluorescence decays, eliminating the need for iterative signal
reconstruction. We validate our proposed neural network
method against support vector machine (SVM) baselines, with
our method showing a 6.5%-8.3% increase in sensitivity.
Our results show that neural networks that implement
data-driven feature extraction provide superior results
and enable the capacity needed to target specific issues, such
as inter-patient variability and the heterogeneity of oral lesions.

Clinical relevance— We improve standard classification algo-
rithms for in vivo diagnosis of oral cancer lesions from maFLIm
for clinical use in cancer screening, reducing unnecessary
biopsies and facilitating early detection of oral cancer.

I. INTRODUCTION

With increased research into targeted therapies, cancer has
become increasingly viewed as a highly diverse problem,
with a complex tumor microenvironment (TME) that leads
to high inter- and intra- tumor heterogeneity [1]. While
recent research has improved understanding of the TME
and led to increases in targeted therapies, many aspects of
cancer remain undefined [2]. Even a specific subtype of
cancer, such as oral cancer, can be further separated into
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finer groupings based on differences in tissue composition of
various oral tissues, risk factors (e.g., human papillomavirus
(HPV)), and race [3]–[5]. Considering the complexity of oral
cancer, automated classification algorithms could aid in early
detection by providing care to patients without access to
an expert clinician. However, lesion heterogeneity combined
with the small size of datasets lead to overfitting that has been
a key challenge limiting the use of automated classifiers for
oral cancer diagnosis.

Recent efforts to automatically classify oral lesions
have used multispectral autofluorescence lifetime imaging
(maFLIM) endoscopy to assess molecular characteristics of
tissue by measuring autofluorescence from cells associated
with the structural and metabolic state of the lesion. To date,
most maFLIM cancer classification or margin delineation for
in vivo images use hand-derived features such as lifetime
and intensity, in combination with classical machine learning
methods such as support vector machines (SVM), linear
discriminant analysis (LDA), or quadratic discriminant anal-
ysis (QDA) rather than neural networks in an effort to
prevent overfitting [6]–[8]. Further, feature generation often
uses a deconvolved signal reconstructed from an iterative
fitting method [6], [7]. While these methods show promising
preliminary results, high inter-patient variability and lesion
heterogeneity may not be adequately modeled using signal
estimation and pre-defined features. The use of data-driven
feature extraction in a neural network classification archi-
tecture may provide a flexible approach that accommodates
lesion heterogeneity if the tendency for overfitting is reduced.
Therefore, we propose a joint autoencoder and classifier
neural network to provide fit-free feature extraction and clas-
sification using raw fluorescence decays. In contrast to other
fit-free methods such as Laguerre deconvolution [9], our
network uses the classification label to ensure the generation
of task-specific features. At the same time, the autoencoder
structure reduces overfitting and retains the ability to use
unlabeled data by optimizing the reconstruction loss.

In contrast to hand-crafted features, our end-to-end neural
network uses a data-driven feature extraction method to
generate discriminative features for cancer diagnosis. We
successfully regularize the neural network to reduce overfit-
ting, showing a 6.5%-8.3% increase in sensitivity compared
to a baseline SVM trained with typical hand-crafted features.

II. BACKGROUND

In imaging of oral lesions, maFLIM endoscopy measures
the autofluorescence in three spectral bands correspond-
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ing to collagen, reduced nicotinamide adenine dinucleotide
(NADH), and flavin adenine dinucleotide (FAD), respec-
tively. Following image acquisition, the measured fluores-
cence decays are often deconvolved by an iterative method
using a fitting model, such as a bi-exponential decay [6], [8].
The deconvolved signal is then reconstructed from the fitting
parameters and hand-crafted features are calculated. The
standard features previously used consist of the parameters
from the fit and variations on intensity and lifetime [6], [8].
The signal intensity (Ik) captures spectral characteristics, and
is defined in Equation 1,

Ik =

∫
hk(t) dt (1)

where hk(t) is the deconvolved fluorescence decay signal at
time t, and k specifies the channel. Equation 2 defines the
signal lifetime (τk), which captures temporal characteristics.

τk =

∫
thk(t) dt∫
hk(t) dt

(2)

Two potential issues exist with this approach. First, the
features are limited by signal reconstruction using a fitting
model. For example, in a bi-exponential model, each channel
in a single deconvolved fluorescence decay can be com-
pletely reconstructed using four parameters. A fitting model
severely limits novel feature generation methods, as the
signal is completely defined by the parameters from the fit.
Fereidouni et al. [10] explored the Laguerre deconvolution
and phasors as non-parametric deconvolution methods, but
did not use these methods in classification. In skin cancer
diagnosis using maFLIM endoscopy, Vasanthakumari et al.
[11] showed promising performance with LDA and QDA
classifiers trained with features calculated from the resulting
phasors after frequency domain deconvolution. However,
none of these methods incorporates the classification labels
in the feature extraction process, so they cannot ensure
that the features are task-specific. Second, an imposed fit
and hand-crafted feature set may not adequately describe
the heterogeneity in oral lesions. For example, Marsden
et al. [8] found that a random forest classifier performed
better on tonsil lesions than on tongue lesions although
images from both locations were included in the training
set. Perhaps due to the small size of datasets, few studies
have documented any other approach for classification of
oral lesions from in vivo maFLIM endoscopy images. For
oral cancer classification, Jo et al. [6] deconvolved the signal
using a bi-exponential model, then used the deconvolved
signal to generate lifetime and intensity features. Marsden
et al. [8] experimented with a 1-D convolutional neural net-
work (CNN) for margin detection in oral lesions. However,
they used a deconvolved signal reconstructed from Laguerre
coefficients and found that neural network performance was
inferior to random forest classification. Further, they noted
issues with overfitting that required pre-training the network
on synthetic examples of fluorescence lifetime estimation to
obtain any reasonable result. CNNs have also been used for
classification of oral photographic images using a network
pre-trained on ImageNet [12]. However, this approach is not

TABLE I
LOCATION OF ORAL LESIONS

Location Benign Dysplasia SCC
Mucosa 10 3 9
Floor of Mouth 2 0 1
Gingiva 0 2 3
Lip 10 0 2
Mandible 0 0 1
Palate 1 0 0
Maxilla 0 0 1
Retromolar 1 0 0
Tongue 9 0 12
Total 33 5 29

applicable to maFLIM endoscopy images trained on individ-
ual pixels. Like Fereidouni et al. [10] and Vasanthakumari
et al. [11], our approach does not rely on a fitting model
or iterative deconvolution. However, our end-to-end, joint
neural network model ensures task-specific features while
reducing overfitting without pre-training.

III. METHODS
A. Data

The procedure for data collection included imaging,
biopsy, and histopathological diagnosis (approved by the
Institutional Review Boards at Hamad Medical Corporation
in Doha, Qatar). All oral epithelial lesions were clinically
identified as potentially cancerous or precancerous before
imaging. A total of 67 in vivo images of oral lesions were
collected using the maFLIM endoscope described by Cheng
et al. [13]. The endoscope covers a circular area approxi-
mately 11 mm in diameter. A reference image of healthy oral
tissue for each subject was also collected. Only the lesion
images are used for this study. For classification purposes,
we include cases of dysplasia with squamous cell carcinoma
(SCC) lesions, formulating the task as a binary problem:
benign vs. malignant (dysplasia + SCC) oral lesions.

The fluorescence decay from the lesion was measured
at each pixel, with an image size of 160x160 pixels. Pre-
processing at the image level consisted of signal inversion
and median filtering. At the pixel-level, the measured decay
was chopped or zero-padded to a length of 300 samples per
channel. We use masks to exclude pixels with poor SNR or
saturated pixels, which would affect the classifiers. As the
gain used during acquisition was not constant, the concate-
nated decays were normalized to sum to 100. We directly
use the decays without the deconvolution step. However,
our baseline with SVM uses a bi-exponential model and
iterative deconvolution method to estimate the deconvolved
signal before feature calculation. Following deconvolution,
the signal is given by the bi-exponential in Equation 3,

hk = αfast,ke
−t/τfast,k + αslow,ke

−t/τslow,k (3)

where hk is the deconvolved signal, α is the weight of the
exponential, τ is the rate of decay, and k denotes the channel.
Table I shows the locations and classes of the 67 lesions.

B. Machine Learning Framework

We propose a joint neural network model that uses a
shared encoder and separate paths to generate the signal
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Fig. 1. Joint Neural Network Structure. The reconstruction path is trained
with the mean square error (MSE) loss and the classification path is trained
with the cross entropy (CE) loss.

reconstruction and the classification output. Figure 1 shows
the proposed architecture, which carefully avoids overfitting,
since deep learning approaches often rely on large databases
that are not available in medical applications. The joint
structure eliminates iterative signal reconstruction, generates
task-specific features from the data, and retains the ability
to use unlabeled data for domain adaptation and improved
generalization in the future. Additionally, the reconstruction
path serves as a form of regularization to reduce overfitting.
The shared encoder has four contracting layers, reducing the
dimension of the input signal from 900 to 16, creating a low
dimension bottleneck embedding. The decoder mirrors the
encoder, reconstructing the input signal by optimizing the
mean squared error (MSE) between the input and recon-
structed signal. The classifier is attached to the bottleneck
embedding layer. It has two layers followed by a softmax
layer to produce the classification output. The classifier
is trained using the categorical cross entropy (CE) loss.
We weight the reconstruction loss by a factor of two in
comparison to the classification loss to cause the model to
prioritize the reconstruction loss and reduce overfitting to the
training classification labels. All layers are fully connected
with rectified linear unit (ReLU) activations, except the final
softmax layer in the classifier. All layers in the autoencoder
use batch normalization. All layers in the classifier use
dropout with a rate of p = 0.5 to regularize the network and
avoid overfitting. The network is implemented using Keras
with TensorFlow [14]. The architecture separately processes
each of the ∼1.7M pixels in the 67 images, creating a
prediction per pixel.

The evaluation uses a ten-fold cross validation approach
creating train, development and test sets. One fold is used
for testing the models. Then, we use two folds for the
development set. The remaining seven folds are used in the
train set. The partitions are selected on an image basis by
randomly partitioning the images. Therefore, all the pixels
from an image are included either in the train, development

TABLE II
CLASSIFICATION PERFORMANCE - MEAN (SD)

Sens. Spec. Prec. F1 Acc.
SVM SFS 81.0(5.3) 67.3(4.8) 73.8(3.5) 74.9(3.6) 74.0(3.2)
SVM L1 79.2(5.1) 73.3(5.0) 78.1(4.9) 75.9(4.4) 76.4(3.4)
Neural Net 87.5(3.8) 67.6(6.5) 76.3(3.5) 79.8(2.6) 77.6(3.1)

or test set. The sets did not have any overlap. Once randomly
split, we used the same train, development, and test sets
for our method and the baselines (Sec. III-C) to have fair
comparisons. Although there is only one more malignant
lesions than benign lesions (Table I), each image contains a
different number of valid pixels, resulting in a different level
of class imbalance based on the specific split of the data.
To reduce the classifier bias from the training distribution,
sample weights are generated using the class weight function
from the sci-kit learn toolkit [15]. The model is optimized
using Adam with a learning rate of 1e-5 and trained for 80
epochs with an early stopping on the development set with a
patience of 10 epochs. The best model on the development
set is used on the test set to increase generalization.

C. Baseline
As a baseline, we use SVM classifiers with a total of

21 standard features used in other studies. Each channel
contributes 1 intensity, 1 lifetime, and 3 features from the bi-
exponential decay model (15 total channel-specific features).
The weights given by the α’s in Equation 3 sum to one, so
only one weight per channel is used in the feature set. In
addition to the channel-specific features, we include 3 ratios
of intensities and 3 features from the sum of two intensities
divided by the remaining intensity.

Although SVM is commonly used for classification of
maFLIM endoscopy images, several variations exist. Mars-
den et al. [8] used SVM with a radial bias function kernel
for margin delineation of in vivo maFLIM endoscopy images
of oral lesions. Chen et al. [16] used a linear kernel SVM
for classification of ex-vivo maFLIM endoscopy images of
skin lesions. In consideration of the size of the dataset, we
use a SVM with a linear kernel to minimize overfitting,
implemented with Linear SVC using the sci-kit learn toolkit
[15]. We set the value of the regularization parameter C to
1.0 (default) and use the sequential forward selection (SFS)
from the Python library MLxtend [17] to find the optimal
number of features based on the development performance.

To assess the effect of limited validation data on the
model performance, we use the same linear kernel SVM as
above, but replace SFS with L1 regularization to generate a
sparse solution and implicitly perform feature selection. We
optimized the regularization parameter, C, for each fold using
the development performance (C ∈ {1e−5, 1e−4, 1e−3}).
Using L1 regularization eliminates the need for feature
selection, reducing the impact of a small development set
and potentially improving generalization.

IV. RESULTS
Our data contains lesions from locations with only a

single example (Table I). It also includes three examples
of dysplasia. A random split may result in an unbalanced

3896



test set, containing lesions from locations and classes that
were not represented in the train set. Additionally, random
initialization of the neural network can produce different
results on separate runs. To give a fair assessment of each
method, we run 10 trials with a different random ten-fold
cross validation split for each trial. All classifiers are trained
on a pixel level. A pixel receives the binary label of the
image. However, the benign or malignant prediction for an
image in the test set is computed by using the majority
rule across the pixel predictions in an image. We assess
performance with sensitivity and specificity rates.

Table II shows the mean and standard deviation for clas-
sification performance over ten trials. Our joint neural net
model produced the best results, with a 6.5% increase in sen-
sitivity over the SVM model with SFS and a 8.3% increase in
sensitivity over the SVM model with L1 regularization. The
specificity of our model was slightly higher than SVM with
SFS. Considering the average of sensitivity and specificity,
the neural network outperforms both SVM models. This
result is promising as the features are directly extracted from
the data, without relying on hand-crafted features used for the
SVM models. As we collect more data, we expect the results
to be even better. The SVM model with L1 regularization
has the least gap between sensitivity and specificity which
gives the highest specificity but lowest sensitivity of the
three models. We attribute this more balanced result to the
reduced reliance on the development set, which can fail
to represent the testing data due to its small sample of a
highly diverse dataset. In contrast to L2 regularization, L1
regularization typically does not select groups of correlated
features [18]. Group selection is desirable when correlated
features become discriminative when used in combination.
However, oral lesions from different classes may not exhibit
the same feature combinations, causing overfitting to specific
subgroups of lesions in the train and development sets.

In the future, our neural network model can incorporate
unlabeled data to expand both the training and development
datasets without requiring labels using the reconstruction
loss. The model will preserve complex relationships within
subgroups of oral lesions, while preventing overfitting. No-
tably, our model allows the use of more data without requir-
ing painful resection and time-consuming biopsy.

V. CONCLUSIONS

We proposed a new deep neural network method for
feature extraction and classification of oral lesions. Our
approach used joint training of a fully-connected feature
extractor and classifier to diagnose oral cancer with up
to 8.3% increase in sensitivity compared to baseline SVM
models with standard features. We provide a second com-
parison using SVM with L1 regularization to reduce reliance
on a small, limited development set for feature selection.
The more balanced result indicates that our method may
further improve by including additional, unlabeled data in
training and development sets. In future work, our joint
neural network can be improved using unlabeled images of
a large number of oral lesions in the autoencoder path of the

network. We can incorporate images of the contralateral side
of each lesion by expanding the network to accept image
pairs and contrast lesion and normal tissue from a single
patient. In addition, we would like to assess the ability of
our model to use unlabeled data to create a single classifier
for images collected from multiple centers and from slightly
different domains (e.g., skin lesions).
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