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Abstract— Additive manufacturing (AM) platforms allow the
production of patient tissue engineering scaffolds with desirable
architectures. Although AM platforms offer exceptional control
on architecture, post-processing methods such as sintering
and freeze-drying often deform the printed scaffold structure.
In-situ 4D imaging can be used to analyze changes that
occur during post-processing. Visualization and analysis of
changes in selected volumes of interests (VOIs) over time are
essential to understand the underlining mechanisms of scaffold
deformations. Yet, automated detection and tracking of VOIs
in the 3D printed scaffold over time using 4D image data
is currently an unsolved image processing task. This paper
proposes a new image processing technique to segment, detect
and track volumes of interest in 3D printed tissue engineering
scaffolds. The method is validated using a 4D synchrotron
sourced microCT image data captured during the sintering
of bioactive glass scaffolds in-situ. The proposed method will
contribute to the development of scaffolds with controllable
designs and optimum properties for the development of patient-
specific scaffolds.

I. INTRODUCTION

Additive manufacturing (AM) is currently in a great in-
terest in tissue engineering due to its ability to fabricate
geometrically sophisticated structures. This tailor-made man-
ufacturing process can be used to produce patient-specific
tissue scaffold upon further development [1]. The mechanical
and biological properties of scaffolds should be considered
beforehand to develop such scaffolds. Hence, pore size,
strut thickness and the interconnection of pores which are
crucial for cell proliferation as well as mechanical strength
should be predetermined [2]. Designing scaffold architec-
tures are one way to achieve the desired biological and
mechanical properties. Depending on the biomaterial choice,
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Fig. 1. (a) shows a segmented 3D image of the scaffold (b) shows a
Volume of Interest required to track.

architectures such as woodpile, and honeycomb are used
to infill the scaffold [3]. Here, the geometries are aligned
with linear pore connections to facilitate cell proliferation
while maintaining continuous material in the z-direction to
enhance the mechanical strength [4]. Woodpile architecture
is the simplest and contains homogeneously arranged pores
providing a convenient path to allow the blood flow, high
load-supporting ability and excellent mechanical properties
[5].

One of the major problems when designing 3D printed
patient specific scaffolds is alterations occurring during the
manufacturing process, ultimately resulting a deviation from
the initially designed CAD model [6]. Additive manufac-
turing of ceramics and glass scaffolds usually involves
the sintering of green body scaffolds. Sintering delivers a
densified scaffold with better mechanical properties, and
because of this densification, a global level 3D shrinkage
of the scaffold can be observed [4]. Hydrogels also show a
significant swelling when the crosslinking density is lowered
to obtain improved endothelial network formation [7]. In post
processing events such as freeze-drying, the scaffolds show
different ratios of swelling and pore sizes [8].

In situ 4D imaging methods such as synchrotron-sourced
micro computed tomography (micro-CT) can be used to char-
acterize deformations occurring during the manufacturing of
tissue engineering scaffolds. Struts can be categorized as
building elements of a scaffold. Therefore, four-dimensional
analyzing dynamics of struts and unit cells of scaffolds is
important to determine the optimal processing conditions and
understand the underlying mechanisms. For example, recent
study of Nommeots-Nomm et al discusses the influence
of particle densification within a strut for the global level
structural changes of 3D printed bioactive glass scaffolds[4].
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Fig. 2. Image processing pipeline to detect VOIs; (a) Pre-processing (i) Image slice of a reconstructed 3D image (ii) cropped, rotated and resampled
3D image (iii) 3D image generated with image slices which include VOIs; (b) Noise reduction and segmentation of VOIs (i) Image slice before the noise
reduction (ii) Image slice after the noise reduction (iii) Implicit Contour fitted to Regions of Interest (iv) Segmented 3D image;(c) VOI detection

Image analysis plays a vital role in the quantitative analy-
sis of 3D printed scaffolds. Implementation of customized
image processing methods is important to analyze post-
processing events of 3D printed scaffolds over time. One of
the challenging image processing tasks is to track volumes
of interests (VOIs) of scaffolds such as slices of struts and
unit cells over time in a series of 3D images. Current four-
dimensional image analysis of 3D printed scaffolds is based
on manually selected VOIs, which is a time consuming and
tiresome process when it comes to analyzing multiple VOIs
in a large set of scans [4]. In this work, we propose an
image processing method to detect and track VOIs in 3D
printed tissue engineering scaffolds using 4D image data for
the first time. A 4D synchrotron-sourced micro-tomography
image dataset captured during the sintering of bioactive glass
scaffolds was used to demonstrate the image processing
method.

II. METHODS

The proposed image processing method is implemented
incorporating ImageJ API, and Skimage, Sklearn python
libraries and can be accessed via github (link). The method
is composed of several important steps, including pre-
processing, segmentation, VOI detection and VOI tracking.

A. Image Acquisition

The scaffolds of bioactive glass ICIE16 (49.46 mol.%
SiO2, 36.27 mol.% CaO, 6.6 mol.% Na2O, 1.07 mol.%
P2O5 and 6.6 mol.% K2O) were produced according to
the protocol presented by Nommeots-Nomm et al [9]. Here,
green body scaffolds with wood pile architecture were pro-
duced. The size of the scaffolds was 1.8 mm × 1.8 mm ×

1.8 mm. The 3D printed green body scaffolds were sintered
to obtain fully densified glass scaffold. The sintering was
performed in the bespoke proportional- integral- derivative-
controlled ‘Laura’ furnace as ilustrated in [4, Fig. 1] and
imaged in-situ using synchrotron sourced X-ray microtomog-
raphy at the Diamond-Manchester Imaging Branchline I13-
2 of Diamond Light Source. The imaging was conducted
with a filtered pink polychromatic beam in the energy range
of 8 to 30 KeV and the emitted X-ray beam was captured
using a CMOS detector with a resolution of 2560×2160.
All scans were captured with a total magnification of 4×
which resulted in an effective isotropic pixel size of 0.81 µm.
Projections captured during the sintering of the scaffold were
reconstructed using Filtered Back Projection algorithm. Here,
93 3D reconstructed images captured over time (3 hours)
were considered to validate the proposed image processing
technique.

B. Volume of Interest

Fig. 1.a shows a segmented image of green body of the
scaffold obtained from a 3D reconstructed scan. To under-
stand the changes occurring within a strut of the scaffold,
slices of struts (Example: Fig. 1.b) which are considered as
the volumes of interest (VOIs) can be taken into the analysis.
Prior to track the VOIs in 4D, VOIs should be automatically
detected.

C. Pre-processing of Images

Size of a 3D reconstructed image is 2560×2560×2159.
Fig. 2.a.i shows a slice of a 3D reconstructed image. As the
initial step of pre-processing, each 3D image was rotated as
such struts are aligned in z and y direction of the image
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Fig. 3. (a) shows an image slices which include sections VOIs. (b) shows
image slices which do not include sections of VOIs.

coordinates. Then the images were cropped to the image
size of 1356×1296×1540 to remove excess background. All
the images were resampled with a factor of 0.25 to reduce
computational cost of detecting VOIs. Fig. 2.a.ii shows a
resampled 3D image.

As a pre-processing step, image slices without VOIs were
removed using a machine learning classifier. Here, each
image slice of a 3D image was classified into 2 classes. One
class is slices which include pixels of VOIs (Example: Fig.
3.a) and the other class is slices which do not include pixels
VOIs (Example: Fig. 3.b). A set of labelled images of these
2 classes were used as training data to train a Support Vector
Machine (SVM) Classifier.

The SVM classifier was implemented using Scikit-learn
[10]. The set of pixel values of a further resampled image
slice (64×64) was considered as the feature vector of that
particular image slice. The set of hyperparameters of the
SVM model is { C : 1.0 , shape of the function : one-
vs-rest(ovr), kernel : RBF, gamma: scale (1 / (number of
features×variance of input features )}. The trained classifier
was used to detect image slices which include VOIs. Then
image slices which don’t include VOIs were removed. An
example is shown in Fig. 2.a.iii.

D. Noise Reduction and Segmentation of VOIs

As a pre-processing step for the segmentation of strut cross
sections, non-local mean filtering was applied to reduce the
background noise of the image (Fig. 2.b.ii). Non-local means
algorithm uses redundant information of the image to reduce
the noise by performing a weighted average of pixel values
considering spatial and intensity similarities between pixels.
It is calculated between equally sized patches as they capture
geometry and texture around the site in consideration [11].

Level set algorithm [12] was used to segment strut cross-
sections in each image slice with VOIs. Here a contour
embedded as a zero level of a higher dimension function
named as level set function is fitted to boundaries of regions
of interest (ROIs). Zero level set (contour) can be described
using the Equation (1) for a given level set function φ(x, y, t)
where φ(x, y, t) is surface in 3 dimensions. In this case,
the level set function evolves until it reaches the boundaries
of ROIs. The movement formula for the level set can be
formulated as Equation (2). F is the speed function. In this

case, F is related to the edges of the image.

φ(x, y, t) = 0 (1)

φt + F | ∆φ |= 0 (2)

Fig. 4. Tracking VOIs over the image series

Fig. 2.b.iii shows the fitted contour to boundaries of struts
of the scaffolds. Fig. 2.b.iv shows the segmentation of VOIs
in the 3D image.

Algorithm 1 Stitching VOI centers
function STITCHING VOIS CENTERS(listA)

. function to stitch VOIs based on center coordinates
. listA is a list of center coordinate lists of VOIs in each
image

lst st cds← [ ] . list to get stitched center
coordinate list for each VOI

for i← 1 to number of V OIs do
st cds← [ ] . list to get stitched center

coordinates for a VOI
p 1← listA[1][i] . center coordinate of a VOI of

the first image
append p 1 to st cds
for j ← 2 to number of images do

min distance← very large number
for k ← 2 to number of V OIs do

p 2← listA[j][k]
distance← euclidean p1 and p2
if distance < min distance then

p next← p 2

append p next to st cds
p 1← p next

append st cds to lst st cds
return lst st cds

E. Detecting VOIs

After the segmentation, each VOI can be identified as
separated connected components of the 3D image. Each
of these connected components were labelled using scikit-
image [13] Python library. A 3D image with labelled VOI
is shown in the Fig. 2.c.i Centre of the VOI were obtained
using regionprops function of scikit-image. Fig. 2.c.ii shows
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center coordinates obtained by this method. Based on these
center coordinates of VOIs in the original image (before
resampling) can also be obtained. In this work VOIs (strut
slices) with the dimension of 150×140×70 were generated at
each time-time point (for each 3D image).

Fig. 5. (a) tracking VOIs of scaffold over time; (b) child volumes/ VOIs
obtained over time (i) based on coordinates obtained from proposed method
and (ii) based on fixed coordinates; (c) segmented image of VOIs within a
3D printed scaffold designed with wood-pile architecture.

F. Tracking VOIs

VOI detection method delivers center points respective to
VOIs in all the captured 3D images. In this work more than
27 VOIs were detected in each 3D image (Fig. 2.c.i). This
work aims to track a particular VOI over the series of scans
(Fig. 5). Here, the center coordinates VOIs in consecutive
scans were matched based on minimum Euclidean distance,
assuming that movement of a VOI within 2 consecutive scan
is less than the distance within different VOIs. The pseudo
code for VOI stitching over-time is shown in algorithm 1.

III. RESULTS AND DISCUSSION

The average center error of the proposed tracking algo-
rithm is 2.8, which corresponds to the distance of 3 (rounded)
voxels and 2.43 µm. Fig. 5.a illustrate the tracking of VOI
overtime with the deformations occurring in the overall
structure of the scaffold.

One of the main advantages of tracking a VOI is visual-
ization of changes occurred within the VOI over-time. Fig.
5.b illustrates the visualization of a strut over time with
tracking algorithm (Fig. 5.b.i) and fixed image coordinates
(Fig. 5.b.ii). Child volumes obtained from the tracking algo-
rithm can also be used as a pre-processing step for further
quantitative analysis. A video generated by tracking a VOI
over the complete scan set can be access via github (link).

The proposed algorithm is not limited to detect and track
VOIs (strut slices) over the z-direction of the scaffold. It can

also be applied to struts in y direction simply by rotating
the images. Fig. 5.c shows the segmented VOIs within a 3D
printed scaffold design with woodpile architecture that can
be detected and tracked based on the proposed method.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposed a novel image processing technique to
segment, detect, and track volumes of interest in 3D printed
tissue engineering scaffolds using 4D imaging modalities.
The proposed method was validated using 4D synchrotron
sourced micro-CT image data captured during the sintering
of bioactive glass scaffolds in-situ. We believe that the pro-
posed VOI tracking algorithm will contribute to the dynamic
characterization of 3D printed scaffolds and realization of
patient specific scaffolds. As medical implants are required
to confirm quality assurance, understanding deformations
occur in the 3D printed scaffold is vital. Therefore, dedicated
image analysis frameworks to characterize tissue engineering
scaffolds are necessary. The proposed image processing
methodology can be integrated into such image analysis
frameworks.
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