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Abstract— Several studies have demonstrated beneficial ef-
fects of real-time biofeedback for improving postural control.
However, the application for daily activities, which also include
postural transitions, is still limited. One crucial aspect is the
time point of providing feedback, and thus its reliability. This
might depend on the sensor system used, but also on how the
threshold is defined. This study investigates which wearable
sensor system and what kind of threshold is more reliable in a
situation of a postural transition.

To this end, we compared three sensor systems regarding
their accuracy in timing in a stable and unstable postural
transition in 16 healthy young adults: a multiple Inertial
Measurement Unit system (IMU), a pressure Insoles System
(IS), and a combination of both systems (COMB). Further, we
contrasted two threshold parameters for each system: a Quiet
Standing-based threshold (QSth) and a Limits of Stability-based
threshold (LoSth).

Two-way repeated measures ANOVAs and Wilcoxon tests
(α = 0.05) indicated highest accuracy in the COMB LoSth,
though with small differences to the IS LoSth. The LoSth showed
more accurate timing than the QSth, especially in medio-lateral
direction for IS and COMB.

Consequently, for providing a reliable timing for a potential
biofeedback applied by a wearable device in everyday life
situations applications should focus on pressure insoles and a
functional stability threshold, such as the LoS-based threshold.

I. INTRODUCTION
Falls are among the most common causes for injuries in

the elderly and their prevalence is further increasing [1]. The
main reasons for falls are gait and balance disorders resulting
e.g. from a physical decline or neurological disease [1].
Consequently, researchers employ sensor technologies to ob-
jectively quantify balance disorders [2] and provide sensory
feedback helping to improve patients’ balance [2][3]. Besides
stationary systems wearable devices have been developed.
These devices are mostly based on Inertial Measurement
Units (IMU) or a pressure Insoles System (IS) that estimate
the patients’ body motions [3]. A high variability in the
Center of Mass (CoM) or Center of Pressure (CoP) trajectory
indicate balance instabilities [3]. Once the CoM shifts outside
the Base of Support (BoS), the body becomes unstable and
there is a risk to tip over [4]. However, humans are able to
cope with a certain degree of imbalance in order to prevent
falls. A metric to quantify this ability are the so called Limits
of Stability (LoS), the maximal displacement an individual
can lean in any direction from an upright position without
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changing the BoS [5]. To measure static balance [6] and to
provide biofeedback [3], often a single IMU is attached to
the patient’s lumbar area as an approximation of the CoM.
However, such a single IMU is prone to detect unintended
movements during postural transitions, such as Sit-to-Stand
and vice versa [7], and thus, might trigger feedback in a
situation in which the posture itself is stable. On the other
hand, a biomechanical model based on a multiple IMU
system can accurately estimate the CoM and ground reaction
forces (GRFs) [8][9]. GRFs are commonly assessed by force
plates or pressure insoles [3][6] to accurately analyze more
dynamic situations such as gait [6], or for providing biofeed-
back in such situations [3]. However, e.g. in patients with
orthopaedic insoles, pressure insoles might be not applicable
[10]. Therefore, the question arises, if a multiple IMU system
is comparable with a pressure insole system, or eventually a
combination of both might be more accurate for triggering
a potential feedback.

In the context of biofeedback for postural control, thresh-
olds are often based on the deviation in the baseline sway
(e.g. [11][3]) or a proportion of the voluntary LoS (e.g.
[12]). The threshold’s choice might influence the efficacy
of the biofeedback given: Vibrotactile feedback reduced step
reaction times in elderly in the work of Asseman et al. [13],
however a work by Lee et al. [14] with an equal setup but
different threshold definitions did not show reductions.

While previous works (see Review by Ma et al. [3])
have mainly focused on providing biofeedback for improving
postural control during stance and gait, the application for
daily activities, which also include postural transitions, is still
limited [15]. For a biofeedback to be successful, it is crucial
to define reliable criteria that indicate balance instability, and
thus a reliable time point to give feedback. However, the
accuracy in timing might depend on the sensor system used,
but also on the threshold’s definition.

Consequently, the aim of this work is to investigate which
wearable sensor system and what kind of threshold is more
reliable during postural transitions. Therefore, we compare
three sensor systems with each other regarding their accuracy
in timing in a stable (sPT) and unstable Postural Transition
(uPT) in 16 healthy young adults: a multiple Inertial Mea-
surement Unit system (IMU), a pressure Insoles System (IS),
and a combination of both systems (COMB). Further, we
contrast two threshold parameters for each system: a Quiet
Standing-based threshold (QSth) and a Limits of Stability-
based threshold (LoSth).
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Fig. 1. Left: Medilogic insoles; Middle: Experimental setup - Participant standing in the initial upright position on a force plate with marked foot position,
IMUs (orange boxes) attached via Velcro straps, and pressure insoles with wireless transmitter in the shoes; Right: Overview of the experimental procedure
with two baseline measurements (QS & LoS) and two postural transition conditions (sPT & uPT).

II. METHODOLOGY
A. Subjects & Setup

16 (9 female) healthy athletic young adults (18-35 years,
1.73±0.1m, 64.5±8.98kg, BMI: 21.49±1.6kg/m2) without
any known medical history of neurological or musculoskele-
tal diseases participated in this study. Since the available
measurement devices were restricted to a body height of
1.50 - 1.95m and a foot size of 23 - 29cm, participation was
limited to individuals within these size ranges. The study was
approved by the ethics committee of the Technical University
of Munich. All participants gave written informed consent.

As the IMU we use the Xsens MVN Link, to track the
CoM’s position [9][16]. The IS consists of two wireless
pressure insoles, based on which we calculate the CoP’s
position. Finally, a force plate (AMTI HPS-SC) functions as
the reference system, measuring the CoP and the time point
when the subjects alter their BoS (tipping point). All systems
(Fig. 1) capture with a sampling frequency of 100Hz.

B. Experimental Procedure

The experiment comprised of four postural conditions
(Fig. 1): two baseline (QS and LoS) and two postural
transition (sPT and uPT) conditions. Each condition was
conducted for three times. Within the LoS and the uPT each
trial consisted of one transition for each direction. Within the
sPT each trial consisted of three transitions. The order of the
four conditions was same for all participants, each transition
starting with a 10s Intro phase in which participants were
asked to stand quietly in a hip-wide, upright position.

First, we asked the participants to stand as quietly as
possible (QS) in the marked position with eyes open and
straight gaze for 45s. We then carried out a four-way-leaning
test similar to Thomson et al. [17], in which subjects were
asked to lean in anterior, left, right and posterior direction
separately as far as they could hold the outmost position
(LoS) for 3s. In the sPT, participants were asked to bend
over to 90° flexion at a given pace. In the uPT, subjects
were asked to first bend over, like in the sPT, then lean in
one direction, as in the LoS, however until they tip over.

C. Threshold Definition and Parameters

Based on the pressure insoles’ and the IMU-system’s out-
put we computed the CoP [18] and CoM [16], respectively.
Subsequently, the mean (µ) and standard deviations (SD,
σ) across two trials of the detrended trajectories in medio-
lateral (ML, along x-axis) and anterior-posterior (AP, along
y-axis) directions were used to compute the ellipse with the
(co-)vertex of (µ − 2σ)/

√
0.0077 and (µ + 2σ)/

√
0.0077.

The factor
√

0.0077 was based on the work of Johannson et
al. [19], who found this factor to represent the relationship
between the baseline sway area and LoS. The LoSth was
defined by 90% of the four LoS values (AP, ML) [12],
averaged across three trials. Consequently, we connected the
four points in a standard ellipse to obtain the ellipse area of
the QSth and the LoSth, respectively, for each system (Fig.
2).

We applied these thresholds to the data of the sPT’s and the
uPT’s measurements and evaluated whether or at which time
point the thresholds were exceeded. In the COMB system, the
thresholds were exceeded as soon as the thresholds of both
systems, the IMU and the IS, were exceeded. For the sPT, we
computed the number of thresholds exceeded averaged across
total number of transitions multiplied by 100 (proportional
threshold exceeded (%)). For the uPT, we evaluated the time
discrepancy (∆t) between the tipping point and the time
point each system’s threshold was exceeded. The tipping
point was defined as the time point 20ms before the vertical
force (Fz) falls below 85% of the subject’s body weight.
Shorter ∆t indicate a more accurate and thus more reliable
timing. The average of the three trials of each subject was
used for statistical analysis.

D. Statistical Analysis

To assess differences between systems and thresholds, we
computed a two-way repeated measures ANOVA following a
2x3 within subjects design with the factors ’Threshold’ and
’System’ and post-hoc paired t-tests for log-transformed ∆t
for uPT. Due to not normally distributed data of proportional
threshold exceeded and violation of homoscedasticity, as well
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Fig. 2. CoM/CoP trajectories during the LoS measurements and the
respective QSth and LoSth of each system.

Fig. 3. Proportional threshold exceeded averaged across subjects; whiskers
indicate Standard Error (SE), + = p<0.1, * = p<0.05, ** = p<0.01 .

as small sample size (n = 16), we computed Friedman and
Wilcoxon tests in sPT. For the uPT, we evaluated the repeated
measures ANOVA separately for each direction. Dunn-Sidak
correction was applied for post-hoc comparisons. Data pro-
cessing and statistical analysis were performed in Matlab
(v2020a).

III. RESULTS
A. Stable Postural Transition

The two-way Friedman test resulted only in a statistical
tendency (p = 0.06). However, due to small sample size,
we further computed post-hoc comparisons for the factors
’System’ and ’Threshold’. One-way Friedman tests revealed
a significant difference between systems only in the LoSth
(Chi2(2) = 11.46, p = 0.00, n = 16). Pairwise comparisons
are shown in Figure 3.

B. Unstable Postural Transition

In all directions, thresholds were exceeded before reaching
the tipping point, indicated by positive values. In anterior

direction (Fig. 4, anterior), we obtained a significant main
effect of ’System’ (F (2, 30) = 9.4, p = 0.00, η2p = 0.39, f =
0.79) and a significant interaction ’System x Threshold’
(F (2, 30) = 18.66, p = 0.00, η2p = 0.55, f = 1.12). Post-
hoc pairwise comparisons resulted in a significantly shorter
∆t for IS and COMB compared to IMU in the LoSth, as well
as in a significantly shorter ∆t for COMB compared to IS
and IMU in the QSth.

In posterior direction (Fig. 4, posterior), we found a
significant main effect of ’System’ (F (2, 30) = 11.49, p =
0.00, η2p = 0.43, f = 0.88), as well as a tendency for a
main effect of ’Threshold’ (F (1, 30) = 4.43, p = 0.05, η2p =
0.23, f = 0.54) and interaction ’System x Threshold’
(F (2, 30) = 3.42, p = 0.06, η2p = 0.19, f = 0.48). Post-hoc
tests revealed a significant difference of 1530ms between IS
and COMB in the QSth and of 654ms in the LoSth, as well
as a significantly shorter ∆t for IMU compared to IS for the
QSth. Regarding threshold effect, we observed a shorter ∆t
for the IS LoSth.

During the uPT left (Fig. 4, left), differences between the
systems and thresholds were more distinct. We found a sig-
nificant main effect of both ’System’ (F (2, 30) = 5.32, p =
0.02, η2p = 0.26, f = 0.6) and ’Threshold’ (F (1, 15) =
17.00, p = 0.00, η2p = 0.53, f = 1.06), but also a significant
interaction ’System x Threshold’ (F (2, 30) = 11.35, p =
0.00, η2p = 0.43, f = 0.87). Post-hoc comparisons revealed
in the QSth a significant difference between IS and COMB,
with shorter ∆t for COMB and a tendency for a difference
between IMU and COMB in the LoSth. Further, a threshold’s
effect was significant for the IS and COMB.

Results of the uPT right (Fig. 4, right) were similar: There
was a significant main effect of both ’System’ (F (2, 30) =
6.56, p = 0.02, η2p = 0.3, f = 0.66) and ’Threshold’
(F (1, 15) = 39.25, p = 0.00, η2p = 0.72, f = 1.62), as
well as the interaction (F (2, 30) = 10.14, p = 0.00, η2p =
0.4, f = 0.82). Within the QSth, the IMU’s and COMB’s ∆t
was significantly shorter than the IS’s, and within the LoSth
there was a tendency for a shorter ∆t for COMB compared
to IS and IMU. Finally, regarding a threshold’s effect, ∆t of
the IS and COMB was significantly shorter in the LoSth than
in the QSth by 2326ms and 1613ms, respectively.

IV. DISCUSSION

This study aimed to investigate which wearable sensor
system and what kind of threshold is more reliable during
postural transitions.

A. Influence of Sensor Systems

In the sPT, differences between systems were dependent
on the threshold parameters, since we could only observe
differences for the LoSth. Thereby, IS and COMB showed
highest reliability, due to a lower number of thresholds
exceeded (Fig. 3). This coincides with results by El Achkar
et al. [7] who report that an insoles-based system classifies
postural transitions more accurately than a IMU-based sys-
tem and detects less false positives.
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Fig. 4. Time discrepancy ∆t between the tipping point and the time point of threshold exceeded during the uPT anterior & posterior and left & right
across subjects; red line = median, whiskers = min/max, + = p<0.1, * = p<0.05, ** = p<0.01, *** = p<0.001 .

In the uPT, COMB consistently had shorter time discrep-
ancies than the other systems, when the LoSth threshold
was used. However, absolute differences were small between
COMB and IS, but larger between COMB and IMU. Differ-
ences between IS and IMU were only significant within the
LoSth in anterior direction. However, the trend shows that
within the LoSth time discrepancy for IS was shorter and
variation between subjects smaller (Fig. 4).

Average reaction times on vibrotactile stimuli lie around
500-600ms in a dual task setting and around 200-450ms
without multi-tasking [20], depending on the age. In our
best case, the COMB LoSth, the average time discrepancy
was 1768ms (average across subjects and directions). This
is four to five times higher compared to reported reaction
times to both a surface perturbation [13][14] and to a
vibrotactile stimulus [20]. Consequently, it might still trigger
a potential biofeedback too early. However, in extreme cases,
time discrepancy between threshold exceeded and the tipping
point fell below 600ms, which might be too late for being
able to respond in time, if being involved in another task.
This high inter-individual variability of our results and the
reported interpersonal variability in reaction times [21] and
perceptual sensitivity [22], especially with increasing age,
suggest that this needs to be considered when designing
wearable devices for improving postural control in daily life.

As described in the introduction, we used a multiple
IMU-system because previous studies showed that it more
accurately estimates the body’s CoM than a single IMU
[8]. Moreover, an IMU-system reveals a good alternative for
patients who cannot use pressure insoles [10]. However, the
results of this work indicate that the IS and COMB were
tendentially still more reliable with a LoSth.

B. Influence of Threshold Parameters

Considering differences between threshold parameters in
the sPT, the LoSth tended to be more reliable for IS compared
to the QSth (Fig. 3). In the uPT differences between systems
and thresholds were more apparent in the ML direction (Fig.
4). The LoSth was more accurate than the QSth, especially for
IS and COMB. Considering the different thresholds’ defini-
tions (Fig. 2), it can be observed that the QSth showed a more

narrow threshold in ML direction compared to the LoSth,
which was the case for most of the subjects. This can be
attributed to a lower baseline sway in ML directions than in
AP, due to the chosen hip-wide bipedal stance and due to the
linear relationship with the baseline sway. However, previous
studies have found that body sway increases with age [23],
while the stability boundary (LoS) decreases [17][19][24].
Consequently, a tighter threshold would be needed with
increasing sway for an elderly population. However, besides
age, also other factors, such as anthropometry [25] influence
our body sway. Respectively, it has been shown that body
sway increases with body height and weight [25] which
can be explained by the inverted pendulum model [4].
This increased body sway would not necessarily be related
to an increased risk of falling, since functional LoS are
also increased with anthropometry [23]. In case the age
effect would be neglected, due to a study population of
healthy young adults, as in our study, a wider QSth, thus, is
appropriate when considering the influence of anthropometry.

On the other hand, the LoS have been reported to better
consider the individuals’ voluntary ability to control balance
[5], and therefore might be more relevant in voluntary
movements, such as bending over. Moreover, Johansson et
al. [19] and Kilby et al. [24] pointed out the importance
of the individual’s LoS, when determining balance and risk
of falling, and goes in line with the previously mentioned
relationship of the range of motion and age [24]. However,
assessing the real LoS in elderly might be limited, e.g. due
to increased fear of falling, and thus might not represent
the ”real” stability limits [19]. Consequently, ”comfortable”
LoS measurements, which approach the real LoS, might be
an alternative for the elderly. Instead of considering 90% of
the LoS, as done in this study, for example, 110% of the
”comfortable” LoS could be used.

Limitations and Future Research

Due to the higher inter-individual variability in the QSth,
future studies should (1) include more than two trials in their
analysis [17], which was the number of trials in our work
(in QS) due to missing values in some of the three trials,
and (2) normalize a baseline threshold [23][25] by known
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factors influencing body sway.
Moreover, the QSth definition was not optimal and did not

fully reflect the participant’s ability to voluntarily control bal-
ance in medio-lateral direction; the proportion factor between
body sway during QS and the LoS might be not completely
representative for our cohort because the subjects in [19]
were older adults and showed smaller LoS than the ones we
measured. Thus, future works should further investigate the
relationship between QS and the LoS in different popula-
tions, such as in various disorders with disturbed postural
stability and different age groups. Finally, the optimal time
span a patient needs to react on the feedback signal should
be further investigated under various daily situations and
conditions.

V. CONCLUSIONS

The time point when feedback is given is crucial for a
potential biofeedback to be successful and reliable. This
work investigated how different wearable sensor systems and
thresholds affect the accuracy in timing/triggering a potential
biofeedback during a stable and unstable postural transition.
A combination of a multiple IMU system and a pressure
insoles system using a Limits of Stability-based threshold
was most accurate in detecting postural instability. However,
differences between the combined and insoles system were
small and differences in performance threshold-dependent.

Future applications should focus on mobile plantar pres-
sure systems, because the pressure insoles are less obtrusive
and easier to integrate in everyday life than a combination
with a multiple IMU system. Although, when considering
the threshold used, a multiple IMU-system might still be an
alternative for patients, who have to wear e.g. orthopaedic
insoles which restricts the use of pressure insoles. Future
works should approach a functional stability-based threshold,
such as the LoS-based threshold. In the end, a prospective
device would need to be tested in a cohort of older adults
and different daily situations, other than the bipedal stance,
to develop a reliable biofeedback system. In order to close
the feedback loop, a real signal should be applied, such as
investigated by Tannert et al. [11].
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