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Abstract— Enhancing the productivity of humans by regu-
lating arousal during cognitive tasks is a challenging topic in
psychology that has a great potential to transform workplaces
for increased productivity and educational systems for enhanced
performance. In this study, we assess the feasibility of using the
Yerkes–Dodson law from psychology to improve performance
during a working memory experiment. We employ a Bayesian
filtering approach to track cognitive arousal and performance.
In particular, by utilizing skin conductance signal recorded
during a working memory experiment in the presence of
music, we decode a cognitive arousal state. This is done by
considering the rate of neural impulse occurrences and their
amplitudes as observations for the arousal model. Similarly,
we decode a performance state using the number of correct
and incorrect responses, and the reaction time as binary and
continuous behavioral observations, respectively. We estimate
the arousal and performance states within an expectation-
maximization framework. Thereafter, we design an arousal-
performance model on the basis of the Yerkes–Dodson law
and estimate the model parameters via regression analysis. In
this experiment musical neurofeedback was used to modulate
cognitive arousal. Our investigations indicate that music can be
used as a mode of actuation to influence arousal and enhance
the cognitive performance during working memory tasks. Our
findings can have a significant impact on designing future smart
workplaces and online educational systems.

I. INTRODUCTION

Human psychological activity is a complicated and broad
topic that receives considerable attention from scholars. One
of the psychological features of our brain that takes a leading
role in our emotional status is called arousal [1]. Arousal
can describe the state of being conscious, the degree of
concentration during a specific process, and various levels of
stress [1]. Thus, it can directly influence our daily routines,
and maintaining a proper level of arousal may result in
being productive throughout psychological and physiologi-
cal activities. Therefore, regular monitoring and regulating
arousal is a critical topic of study. There are several ways to
monitor the arousal states of the brain during an activity. One
of the most popular and non-invasive ways to evaluate the
arousal state is using the electrodermal activity (EDA). The
autonomic nervous system (ANS) activation is responsible
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for the variations in the skin conductance (a measure of EDA)
via sweat secretion as an indicator of psychological arousal
[2].

The other crucial attribute in studying the brain is human
performance during a cognitive task, which can be affected
by several psychological factors such as emotional well-
being, amount of stress, and dedicated concentration. Work-
ing memory is a system in the brain that retains sensory
perceptions for processing and understanding a cognitive
task. Working memory is integral for day-to-day cognitive
functions. The n-back task is a working memory experiment
that was first introduced by Kirchner [3]. It is a common
cognitive experiment that is used for evaluating working
memory. In the n-back task, the participant is presented
with a series of stimuli displayed one at a time, and the
participant has to identify if the current stimulus is the same
as the nth previous one [4]. As is evident, the difficulty
level increases with n, since the participant has to recall
more of the stimuli with larger values of n. Lehmann et al.
[5] showed that the tasks with a higher load on working
memory are influenced by music. Many other studies have
also recognized the ability of music to impact performance
during working memory tasks [6], [7]. There is a need for
investigating how different background music (e.g. calming,
vexing) can influence working memory for developing a
regulation strategy for enhancing performance during the
tasks demanding a higher load on working memory.

The state-space methods have been widely popular in
behavioral learning [8]–[12] and movement decoding in
brain-computer interfaces [13], [14]. Furthermore, state-
space approaches are also used to estimate arousal states
from different physiological binary and continuous observa-
tions similar to [15]–[23]. However, state-space approaches
have not been explored for evaluating individual performance
during working memory tasks to investigate how the decoded
performance varies as a function of the decoded arousal
state. Therefore, we formulate a state-space approach for
estimating performance state and compare it with the arousal
states to investigate the feasibility of improving performance
by using the Yerkes–Dodson law.

The Yerkes–Dodson law explains that throughout an ac-
tivity, at a low arousal level, the performance is lower and
has a positive slope while plotted against arousal level [24],
[25]. At a higher level of arousal, the performance decreases
with an increase in arousal. The performance stays maximum
near the moderate range of arousal. Thus, the inverted-
U law can be considered as a link between arousal and
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Participant 1

Fig. 1: An example skin Conductance deconvolution result. The blue
curve corresponds to the raw skin conductance and red vertical line
corresponds to inferred neural stimuli due to ANS activation.

performance during a cognitive task. As music can modulate
individual arousal and performance [26], analyzing whether
the inverted-U law also holds for a working memory task
while listening to music motivated this study.

In particular, in this study, we investigate the impacts of
music on performance during two n-back tasks (1-back and
3-back tasks). During this n-back experiment, the subject
listened to two different kinds of background music, i.e.
calming and vexing music. We collect user responses as the
correct/incorrect responses and the corresponding reaction
times. We also measured the skin conductance throughout the
experiment. We utilize two state-space models for decoding
both performance and arousal states to relate them to the
corresponding observations, i.e., user behavioral responses
and the skin conductance measurements, respectively. We
utilize an expectation-maximization framework to estimate
both the model parameters and the hidden states from
the corresponding observations. Finally, we investigate the
relationship between the estimated arousal and performance
states.

II. METHODS

A. Dataset

The experiment conducted in this research was approved
by the Institutional Review Board at the University of Hous-
ton, Houston, Texas, USA. There were 6 participants and the
dataset was collected by performing equivalent numbers of
1-back and 3-back task blocks with two sessions of calming
and vexing background music. Each task block started with
a 5 seconds instruction about the task, followed by 22 trials,
with 0.5 seconds for displaying the number and 1.5 seconds
for the participant to respond to the given stimulus resulting
in a total of 49 seconds of total stimulus time. At the end
of each trial, a 10 second RELAX section was contrived.
After 8 trials (halfway mark for each session), a 20 second
RELAX segment was presented and between the sessions,
there was a 2-minute relaxation break where the participant
was allowed to provide a response. A detailed description of
the experiment is provided in [27].

B. Inference of brain activation from skin conductance Mea-
surements

The measured skin conductance during the experiment can
be thought of as a summation of two components: (1) a
slow varying tonic component and (2) a fast varying phasic
component [2], [28]. The tonic component is related to the
body’s thermoregulation and general arousal. The phasic
component is defined as the convolution between the neural
impulse train due to ANS activation and the physiological
system response [2], [28]. For inferring the neural impulse
train due to ANS activation from the raw skin conductance,
we need to perform proper deconvolution. First, we pre-
process the data similar to [22], [29]. Secondly, we low-
pass filter the data at 0.5 Hz. Then, we remove the tonic
component using cvxEDA [30]. Finally, we deconvolve the
extracted phasic component to estimate the sparse ANS
activation. Using a coordinate descent approach, we perform
a signal deconvolution identical to [22]. Thus, we obtain
sparse ANS activations (Fig. 1).

C. Arousal state-space model

Similar to [16], we define a first-order autoregressive (AR)
model for a hidden cognitive arousal state xj such that

xj = xj−1 + εj , (1)

where εj ∼ N (0, σ2
ε ) is the process noise and j represents

the time index. Pursuing the established marked point process
filtering approach for arousal state in [16], we take the
occurrence of a neural impulse nj , as a Bernoulli-distributed
random variable with probability mass function a

nj
j (1 −

aj)
1−nj and P (nj = 1) = aj . We may relate xj to aj using

sigmoid transform according to [8], and the final equation is

aj =
1

1 + e−(xj+β)
, (2)

where β is a constant that can be determined by β ≈
log

(
a0

1−a0

)
and a0 is the average probability of observing

an impulse during the experiment. Similar to [16], we model
the continuous-valued amplitude rj of each neural impulse
as

rj = γ0 + γ1xj + vj , (3)

where rj is the amplitude of the observed neural impulse
due to ANS activation, vj ∼ N (0, σ2

v) is representing the
sensor noise, γ0 and γ1 are the unknown parameters to be
determined. As a result, the joint density function for the
observed neural stimuli is

p(nj ∩ rj |xj) =


1− aj if nj = 0

aj
1√
2πσ2

v

e
−(rj−γ0−γ1xj)

2

2σ2v if nj = 1
.

(4)

Utilizing an expectation-maximization framework,
we are able to estimate the unknown parameters
θA = {σ2

ε , γ0, γ1, σ
2
v}, and hidden state xj , simultaneously.

Here, the E-step equations have been derived based
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on the observations RJ = {(n1, r1), ..., (nJ , rJ)} up
to time J . At the E-step, we apply Bayesian filtering to
estimate xj and the forward filter equations are shown below.

Predict:

xj|j−1 = xj−1|j−1, (5)

σ2
j|j−1 = σ2

j−1|j−1 + σ2
ε , (6)

Update:
if nj = 0

xj|j = xj|j−1 + σ2
j|j−1(nj − aj|j), (7)

σ2
j|j =

[
1

σ2
j|j−1

+ aj|j(1− aj|j)

]−1
, (8)

if nj = 1

Cj =
σ2
j|j−1

γ21σ
2
j|j−1 + σ2

v

, (9)

xj|j = xj|j−1 + Cj

[
σ2
v(nj − aj|j) (10)

+ γ1(rj − γ0 − γ1xj|j−1)
]
,

σ2
j|j =

[
1

σ2
j|j−1

+ aj|j(1− aj|j) +
γ21
σ2
v

]−1
. (11)

Note that xj|j appears on both sides of (7) and (10) and
we can solve for xj numerically by utilizing the Newton-
Raphson method.

After coming to j = J , we reverse the direction and
improve xj by obtaining a set of smoothed mean and
variance estimates. The equations for the backward smoother
are

Aj =
σ2
j|j

σ2
j+1|j

, (12)

xj|J = xj|j +Aj(xj+1|J − xj+1|j), (13)

σ2
j|J = σ2

j|j +A2
j (σ

2
j+1|J − σ

2
j+1|j). (14)

At the M-step, we take J̃ = {j|nj = 1} to indicate the
locations where neural impulses occur. Similar to [16] and
[8], we calculate the expected values of x2j , and xjxj−1 using
the following,

E[x2j ] = x2j|J + σ2
j|J , (15)

E[xj+1xj ] = xj+1|Jxj|J +Ajσ
2
j+1|J . (16)

Using the E-step results, we obtain the log-likelihood func-
tion Q1, we find the unknown parameters such that they
maximize it. The Q1 function is as follows,

Q1 =

J∑
j=1

E[nj(β + xj)− log(1 + eβ+xj )] (17)

+
−J̃
2

log(2πσ2
v)−

∑
j∈J̃

E
[
(rj − γ0 − γ1xj)2

]
2σ2

v

+
−J
2

log(2πσ2
ε )−

J∑
j=1

E
[
(xj − xj−1)2

]
2σ2

ε

.

The algorithm iterates between the E-step and the M-step
until convergence.

D. Performance state-space model
Inspired by the state-space model in [12] for decoding a

cognitive learning state, we represent the cognitive perfor-
mance state as

zk = ρzk−1 + wk, (18)

where zk is an latent performance state, vk ∼ N (0, σ2
w)

stands for process noise, ρ is the unknown coefficient; k is
the trial number during the experiment.

Considering one binary observation (correct/incorrect re-
sponse at kth trial) and one continuous observation (reaction
time of the corresponding response), similar to [12], the
observation equation in terms of reaction time would be

Ik = log tk = α0 + α1zk + δk, (19)

where δk ∼ N (0, σ2
δ ), tk is the reaction time at each trial;

we take the log of the reaction time to ensure at each trial,
the reaction time estimate is positive. α0 and α1 are the
unknown parameters.

Similar to [12], the binary response has been assumed to
have a Bernoulli probability model with the probability mass
function pmkk (1− pk)1−mk and P (mk = 1) = pk. We relate
the performance state to the probability of having correct
response by applying the same sigmoid transform here and
therefore,

pk =
1

1 + e−(zk+µ)
, (20)

and similar to parameter β, the constant term µ, can be found

by µ ≈ log

(
p0

1−p0

)
where p0 is the average probability of

the correct response which is equal to p0 = 0.5.
Again, the unknown parameters of the performance state

model θP = {ρ, σ2
w, α0, α1, σ

2
δ}, and the performance state

zk, can be estimated through EM approach. The E-step
equation would be different from the arousal state case
since we have one binary and one continuous observation
at trial k. The forward filter equations in E-step are,

Predict:

zk|k−1 = ρzk−1|k−1 (21)

s2k|k−1 = ρ2s2k−1|k−1 + σ2
w

Update:

zk|k = zk|k−1 +
s2k|k−1

α2
1s

2
k|k−1 + σ2

δ

[
σ2
δ (mk − pk|k) (22)
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+ α1(Ik − α0 − α1zk|k−1)

]
s2k|k =

[
1

s2k|k−1
+ pk|k(1− pk|k) +

α2
1

σ2
δ

]−1
(23)

By reversing the direction, we may build the smoother
similar to the arousal state-space model. The smoother states
are as follows,

Bk = ρ
s2k|k

s2k+1|k
, (24)

zk|K = zk|k +Bk(zk+1|K − zk+1|k), (25)

s2k|K = s2k|k +B2
k(s

2
k+1|K − s

2
k+1|k). (26)

The expected values of z2k, and zkzk−1 are as follows,

E[z2k] = z2k|K + s2k|K , (27)

E[zk+1zk] = zk+1|Kzk|K +Bks
2
k+1|K . (28)

For the corresponding M-step, the expected log-likelihood
function is as follows,

Q2 =

K∑
k=1

E[mk(µ+ zk)− log(1 + eµ+zk)] (29)

+
−K
2

log(2πσ2
δ )−

K∑
k=1

E
[
(Ik − α0 − α1zk)

2

]
2σ2

δ

+
−K
2

log(2πσ2
w)−

K∑
k=1

E
[
(zk − zk−1)2

]
2σ2

w

.

E. Arousal-performance function

Using both estimated arousal and performance states, we
define a relationship between the arousal state and perfor-
mance state based on the Inverted-U law [24], [25].

Yk = λ1X
2
k + λ2Xk + λ3 + ek (30)

where Yk is a standard score of the performance state at each
trial and Xk is the standard score of the average arousal that a
participant has at each trial. Thus, our observed data points
consist of (X ,Y ). ek has been assumed to be independent
and identically distributed (i.i.d.) random variable, ek ∼
N (0, σ2

e) and, λ1, λ2, and λ3 are the unknown parame-
ters that can be estimated by robust fitting with bisquare
weighting. We avoid using the ordinary least-squares method
since our data points are from multiple different trials and
to overcome the outlier effects, we choose robust regression
analysis for estimating the coefficients. Robust fitting with
bisquare weights uses an iteratively reweighted least-squares
algorithm and we have used a MATLAB function fitlm where
Yk and Xk are the input of the function and, purequadratic
and RobustOpts are the additional options that have been
applied. After estimating λ1, λ2, and λ3, the i.i.d. noise term
ek and its variance σ2

e , can be calculated given the fitted
model and the observed data points.

III. RESULTS

We evaluate the outcome of the arousal and performance
decoders and compare the proposed model with our es-
timated states based on the dataset described above. Fig.
2 shows an example of the decoded arousal state for one
participant (participant 1), where the first subplot is repre-
senting the deconvolved skin conductance signal during the
experiment. Applying the deconvolution algorithm, we detect
neural impulses due to ANS activation during the experiment
as described Fig. 1 and second sub-panel of Fig. 2. We
present the probability of observing an impulse (aj) in the
fourth sub-panel of Fig. 2 which has a direct relationship with
the estimated state. Similar to [16], we define a high arousal
index (HAI) which can be calculated by p(xj > xthreshold)
where the threshold has been set to the median of the
state values. There is a consistence difference between the
calming and vexing region in terms of the observed impulse
amplitude, estimated states values, and HAI.

Fig. 3 illustrates an example of the performance state esti-
mation results for one participant. The first sub-panel shows
the reaction time for each trial (black dots) and reconstructed
reaction time (black curve) that has been reconstructed using
equation (19) with the estimated parameters. The second sub-
panel describes the responses for each trial. Similar to the
arousal case, we can calculate the high performance index
or HPI (fourth sub-panel). By comparing second, third, and
fourth sub-panel, we observe the direct relationship between
the number of correct responses, the estimated state values,
and HPI which exhibits the steadiness of the estimation
results. Additionally, based on the fact that 3-back tasks
are more challenging than 1-back tasks, we expect to have
a higher probability of obtaining correct responses during
the 1-back tasks. The estimated pk and HPI depict that our
results meet this expectation.

Based on obtained arousal and performance estimate, we
perform our regression analysis by fitting the proposed model
in equation (30) on 704 data points which is relatively large
sample size compared to the number of unknowns in the
model. According to Fig. 4 where the x-axis is the standard
score of the estimated arousal states during trials and y-axis
stands for the standard score of the performance states, the
Inverted-U law holds for all participants while the slopes are
different. The estimated coefficients (λ̂) in Table I, reveals
that for all the participants, λ̂1 is negative which depicts the
inverted attribute of the presumed quadratic nature. More-
over, we perform the hypothesis test that the corresponding
coefficient is equal to zero or not. The corresponding p-
values are provided in Table II. From Table II, we see that
the estimated λ1 are statistically significant for all participant
with 1% significant level suggesting strong evidence of the
quadratic relationship.

IV. DISCUSSION AND CONCLUSION

The experiment was originally designed to detect the
influence of musical neurofeedback on cognitive engage-
ment. Using a state-space modeling approach, we decode
cognitive arousal and performance states. Thereafter, we
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Fig. 2: Example of arousal state estimation for a participant. The sub-panels for the figure respectively depict: the skin conductance signal; the
deconvolved neural impulses due to ANS activation; the estimated state and its 95% confidence limits; the probability of impulse occurrence and its 95%
confidence limits; high arousal index or HAI. The background colors in each sub-panel depict: the 1-back task during calming session (light green); the
3-back task during calming session (dark green); the 1-back task during vexing session (light red); the 3-back task during vexing session (dark red).

evaluate the existence of Yerkes–Dodson law via regression
analysis. According to the presented results, at the beginning
of most of the task blocks, we observe some neural impulses
in the inferred ANS activation which can be related to
the participant’s initial excitement. Right after entering the
vexing session, the skin conductance signal value (first sub-
pannel in Fig. 2) increases, which can intensify the music’s
effects on the psychological arousal of the participant.

According to the presence of the Yerkes–Dodson law
or the inverted-U function in Fig. 4, our results indicate
the feasibility of regulating the arousal state such that it
maximizes the performance of the participant using music.
Based on the fact that in this study our participants performed
multiple trails of different tasks (i.e., 1-back and 3-back
tasks during relaxing and vexing music blocks), each of

TABLE I: Estimated parameters of Arousal-Performance model

Participant λ̂1 λ̂2 λ̂3 σ2
e

1 -0.1598 -0.0994 0.1465 0.9346
2 -0.2061 -0.4098 0.2098 0.7394
3 -0.2336 0.0651 0.2179 0.9234
4 -0.5796 0.0661 0.5281 0.7630
5 -0.2676 -0.1024 0.2714 0.8876
6 -0.3790 0.0808 0.3542 0.88578

these variations might impact each participant in a different
way. This might be causing variations in the task-based
noise models when linking the decoded cognitive arousal
to the decoded performance states and impacting how the
inverted-U relationship holds for each subject. Examining
the HAI and HPI in Fig. 2 and Fig. 3, respectively, the
HAI, which expresses the probability of impulse occurrence,
is low during the calming session and high during the
vexing session. Conversely, mean value of HPI, which has a
direct relationship with the performance state value, is higher
during the vexing region compared to the calming region.
Consequently, we can conclude that the arousal state can be
regulated by musical neurofeedback in an attempt to optimize
cognitive performance.

In future, we plan to utilize multi-modal and multi-channel
signals to reliably infer brain activity [31], [32] related to

TABLE II: Arousal-performance regression model results

p-value
Participant λ1 λ2 λ3
1 3.14e-05 0.0197 0.0048
2 4.13e-09 2.04e-25 5.71e-06
3 1.20e-07 0.10985 0.0001
4 5.89e-45 0.0594 8.34e-25
5 3.53e-18 0.0110 4.13e-08
6 2.91e-18 0.0455 1.7e-10
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Fig. 3: Example of performance state estimation for one Participant. The sub-panels for the figure respectively represent: the reaction time (black
dots), reconstructed reaction time (black curve) and its 95 % confidence limits; correct/incorrect response; the state estimate and its 95 % confidence
limits; the probability of correct response and its 95% confidence limits; high performance index or HPI. The background colors in each sub-panel mark:
the 1-back task during the calming session (light green); the 3-back task during the calming session (dark green); the 1-back task during the vexing
session (light red); the 3-back task during the vexing session (dark red).

Fig. 4: Arousal-Performance diagram In each of the sub-panels the red
circles stand for the observed data points and blue curves denote the fitted
model for each of the participants.

cognitive arousal. We then plan to utilize the inferred multi-
modal brain activity to estimate the hidden brain states
with multiple observations [15]. In particular, we plan to
develop multiple-input and multiple-output (MIMO) models
and decoders that link latent arousal and performance states
to multiple types of binary and continuous physiological
measures, and simultaneously decode these cognitive states
by considering the Yerkes–Dodson law. We plan to consider
different noise models for linking cognitive arousal to cogni-
tive performance to better capture the inverted-U relationship
between these two brain states during multiple trials based on

different tasks. Finally, we plan to design a closed-loop sys-
tem with non-invasive actuation such as music to maximize
performance and productivity by regulating arousal [33].
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