
  

  

Abstract— Diabetic retinopathy (DR) is one of the most 

common chronic diseases around the world. Early screening and 

diagnosis of DR patients through retinal fundus is always 

preferred. However, image screening and diagnosis is a highly 

time-consuming task for clinicians. So, there is a high need for 

automatic diagnosis. The objective of our study is to develop and 

validate a new automated deep learning-based approach for 

diabetic retinopathy multi-class detection and classification. In 

this study we evaluate the contribution of the DR features in each 

color channel then we pick the most significant channels and 

calculate their principal components (PCA) which are then fed 

to the deep learning model, and the grading decision is decided 

based on a majority voting scheme applied to the out of the deep 

learning model. The developed models were trained on a 

publicly available dataset with around 80K color fundus images 

and were tested on our local dataset with around 100 images. 

Our results show a significant improvement in DR multi-class 

classification with 85% accuracy, 89% sensitivity, and 96% 

specificity. 

I. INTRODUCTION 

Diabetic retinopathy (DR) is one of the most dangerous 

health complications associated with diabetes [1], causing 

vision loss and irreversible blindness [2]. DR severity can 

be divided into five grades or stages: normal, mild, 

moderate, severe, and proliferative based on the different 

deformation in the retinal parts of the eye [3], [4]. In clinical 

routine, ophthalmologists usually determine the stage based 

on inspecting the damage occurring in retinal blood vessels 

leading to hemorrhage, microaneurysms, and exudates [5]– 

[8]. However, extracting these features is usually subjective 

and time-consuming [9], [10]. Hence, the need for 

automating this task to improve the efficacy of early 

detection and treatment [3], [4]. 

 

Several machine learning approaches were introduced for 

DR grading. Adarsh et al. used a vector of retinal features 

extracted to improve the automated DR detection using 

SVM achieved an accuracy of 95% on both DIARETDB0 

and DIARETDB1 datasets [11]. As most of the generated 

retinal fundus images have low contrast and non-uniform 

illumination, so many studies worked to enhance the image 

quality by applying different preprocessing techniques to 

improve the retinal features. Contrast local adaptive 

histogram equalization (CLAHE) is frequently used for 

vascular architecture enhancement [12]. Another technique 

for blood vessel enhancement was also used to generate the 
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best contrast [13], [14]. Blind source separation approaches 

such as principal component analysis (PCA) and 

independent component analysis (ICA), also used for color 

pigments, architecture feature extraction, and segmentation 

[15], [16]. 
 

Recently, deep learning algorithms, especially 
convolutional neural networks (CNN) had a great 

contribution in automating the DR classification [17], [18]. 

Gulshan et al. used neural networks to classify retinal 

fundus images into three classes (normal, moderate, and 

severe) [2]. Sahlsten et al. Proposed a deep learning model 

for the classification of both DR and macular edema using 

Inception-v3 architecture producing a comparable result to 

the Gulshan group [19]. Furthermore, Pratt et al. proposed 

a convolutional neural network (CNN) to predict the five 

classes of DR achieving promising results of 75% accuracy 

on the public Kaggle data set of 80,000 images [10] [20]. 
While most of the previous studies used the traditional 

RGB format of the colored fundus images, other studies 

have reported that RGB is not the best format for the feature 

extraction process as it does not provide accurate 

representation, especially in the vascular architectures and 

the optic disc [21]. Recently, some studies demonstrated 

that using the green channel only achieves better 

performance as a result of enhancing the image contrast 

[22], [23]. Rajesh et al. proposed a two-stage CNN model, 

the first one to investigate the presence of DR, and a second 

model used for DR grading. They used the green component 

after and CLAHE technique as a preprocessing step for the 

input data, achieving an average accuracy of 90% [24]. 

Gadekallu et al. used deep neural networks combined with 

PCA and firefly techniques to enhance DR grading 

accuracy, sensitivity, and specificity, but they did not have 

the same level of improvement in a less dimensional dataset 

[25]. 

In this work, we investigate the performance of different 

color spaces and statistical components on the CNN 

performance to provide a multi-level classification of retinal 

fundus images. First, we study the CNN classification 

performance when fed with the different channels of several 

color spaces of the images. Then, we pick the color channels 

that achieve the best classification results, use PCA to 

extract the highest contributing components of these 

channels, and use these components as the input to the 

CNN. 
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II. METHODOLOGY 

     A.  Dataset 

We used a public DR dataset from the Kaggle competition 
[20] in the training and validation processes.  It contains the 
five levels of DR. Additional dataset obtained from our 
university hospital was used for independent testing of the 
proposed technique. The images were obtained through a 
research protocol that was approved by the Research Ethics 
Committee, Faculty of Medicine, Cairo University, which 
approved retrospective analysis of pre-existing datasets 
utilized for testing the proposed technique. The dataset 
contains around one hundred color images divided into the 
same five classes in the Kaggle dataset. Table 1 shows the 
number of images in each dataset along with their distribution 
across the five DR classes. 

     B. Data preparation and Preprocessing 

     The investigation of the proposed method efficiency in 

DR classification includes further steps. First, the color 

channels of RGB (Red, Green, and Blue), HSV (Hue, 

Saturation and Value), LAB (Lightness, Red/Green and 

Blue/Yellow values), YIQ (Luma, and Chrominance) were 

extracted. Second, image CLAHE was performed on all 

extract images   to improve the contrast and equalize the 

ranges of pixels’ values [26]. Finally, the images of each 

color channel were fed to the customized neural network 

proposed in [10]. It consisted of ten convolutional layers 

starting with a convolutional layer with a rectified linear unit 

(RELU) activation function and 0.001 learning rate, then 

each convolutional layer followed by a max-pooling layer 

with kernel size 3×3 and strides of 2×2. The next two layers 

were flattened (dense layers) with a dropout of 0.5 to 

overcome the overfitting problem in our data set. Then, 

another dense layer with a softmax activation function is used 

to perform the classification process. The output from the 

final layer was five classes. During the training process, we 

used the L2 regularizer to prevent overfitting. The employed 

loss function was the mean square error (MSE) and the 

gradient descent optimizer was used to optimize the training 

process. Fig1 shows example images for the different color 

channels where different features appear in different 

strengths in the different channels. 

For each DR class, color channels are sorted according to 

their obtained classification accuracies. PCA was then 

applied on two different combinations of the color channels: 

first, the natural color channels systems (i.e., Red and Green 

and Blue, Hue and Saturation and Value, Lightness, 

Red/Green, and Blue/Yellow values and Y, I, and Q). 

Second, the highest three components in terms of accuracy 

were obtained for each DR class. The output PCA 

components in each combination were then fed to the same 

neural network architecture. Finally, the classification 

decision of each channel in each group was then fused using 

a simple majority vote [27] to obtain the final classification 

class of each image. 

 

The proposed approach was implemented using 

TensorFlow-Keras Framework on an Intel Xeon 2.9. GHz  

 

TABLE I. Description of the public and locally acquired datasets. 

 
 Public Dataset Local Dataset 

Total 80,000 88 

Class 1 70684 13 

Class 2 2443 11 

Class 3 5292 45 

Class 4 873 13 

Class 5 708 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Examples for the different color spaces components where some 
features are prominent in some channels more than other channels 
 

with NVidia GeForce RTX 2070 GPU and 64 GB of RAM. 

Our algorithm was evaluated in terms of accuracy, 

sensitivity, and specificity to compare with other studies' 

results in DR classification. 

III. RESULTS  

     Fig 2 shows the classification accuracy for each DR class 

when using the different channels of the images separately. 

The channels combinations that achieved the best accuracy in 

each class were L, Y, and G for class 1, L, Q, and Y for class 

2, L, Y, and G for class 3, Q, an L, and Y for class 4, L, I, and 

G for class 5. Fig 2.f shows the average accuracy over all 

classes using the different color channels, where the L, Y, and 

Q channels achieved the highest average accuracy over all 

classes. The majority voting on the top 3 channels in each 

class obtained an accuracy of 89% for class 1, 95.7% for class 

2, 90% for class 3, 100% for class 4, 99% for class 5, and 

91.9% for the average overall classes. 
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Fig. 2. Classification Accuracy for DR classes using different color 
components (regular line for Pratt model [10], bold one for Raju [28], and 
dashed one for Dutta [29]). 

 

 Table 2 shows the detailed accuracy, sensitivity, and 

specificity across all DR classes when using the Green 

channel (used in [23], [24]), the Y channel (used in [30]), and 

the majority voting on the Y, S, and L channels proposed in 

this work. Fig 3 shows exemplary images for PCA 

components for the typical RGB channels as well as for the 

selected channel combinations YIQ and HSV. Table 3 shows 

the detailed accuracy, sensitivity, and specificity across all 

DR classes when using the PCA components of the YSL and 

HSV channels. The PCA components of the YIQ appear to 

obtain the highest accuracy for class 1 while the PCA 

components of the HSV achieve the highest performance for 

the rest of the DR classes 

IV. DISCUSSION  

In this work, we first evaluated the contribution of each color 
channel and each principal component in the classification 
process. Then, the best channels and components, which 
likely contain more of the indicative features of the different 
DR classes are picked to be fed to CNN. Our results show a 
significant improvement in the classification and grading of 
the DR images. To the best of our knowledge, the proposed 
approach obtained higher performance metrics than previous 
studies [10], [17], [29]. 

The results showed that the combination between the Y 
channel from YIQ space, saturation component from HSV 
space and Lightness component from LAB space provides 

 

 

 

 

 

 

 

 

Fig. 3. Example images for the PCA components of the RGB, YIQ, and HSV 

color channels. Each component illustrates the image features in a different 

way giving different weights for the features that distinguish the associated 
DR class 
 

      TABLE III. Classification Results for Different DR 
Classes when using the PCA components of the YSL and 

HSV channels. 
 PCA of YSL (%) PCA of HSV (%) 

Sens Spec Acc Sens Spec Acc 

 Class 1 78.9 57 90.5 73.4 90.3 82.1 

 Class 2 52.1 96.4 60.6 85 95.3 93.6 

 Class 3 46.4 94 49 78 93.4 87.7 

 Class 4 64.7 99.3 93.9 98.9 99.1 99.9 

 Class 5 64 99.7 93.6 99.4 99.3 100 

Total 61.3 89.3 72.1 86.9 95.5 90.2 

 

 

the best combination for class 1 classification. However, the 

PCA components of the YIQ space are more representative 

of the rest of the DR classes (class 2-class 5). This comes in 

agreement with the simple nature of class 1 where the DR is 

still at an early stage and thus, is likely to be picked directly 

from the different color channels of the image. On the other 

hand, the class 2-class 5 classes have developed more 

complications in the associated features and thus can be 

easily confused in the different color channels while being 

easier to be decoupled in the PCA components. 

TABLE II. Comparing Classification performance across the different DR classes when using the Green channel (used in [23], [24]), 

the Y channel (used in [30]) and the majority voting on the Y, S, and L channels proposed in this work. Accuracy (Acc), Sensitivity 

(Sens) and Specificity (Spec). 

 Green Channel (%) Y Channel (%) YSL Voting (%) 
Sens Spec Acc Sens Spec Acc Sens Spec Acc 

Class 1 72 84.2 87.5 74.6 85.9 87.5 74.4 92.4 87.7 

Class 2 85.4 96.5 92.8 90.9 90.3 94.3 86.5 97.4 95.7 

Class 3 85.4 88.7 90.3 81.1 90 90.9 80 96.9 90 

Class 4 98.3 99.2 99.2 99.8 99.8 99.3 96.2 99.6 100 

Class 5 99.7 99.9 99.6 100 99 99.5 97.4 99.9 99.9 

Total 88.1 93.7 84.7 89.3 93 85.9 86.9 97.3 91.9 
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V. CONCLUSION 

A novel multi-level classification approach that combines 

classical CNN with PCA analysis for DR detection and 

grading was proposed. Feeding the CNN model with the color 

channel and/or image principal component that best describes 

the DR classes helps to achieve better classification for the 

different DR classes. While DR class 1 is best represented by 

the YSL channels combination, the rest of the DR classes 

(class 2-class 5) are best represented in the different PCA 

components of the YIQ color domain. 
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