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Abstract— Around 30% of epilepsy patients have seizures
that cannot be controlled with medication. The most effective
treatments for medically resistant epilepsy are interventions
that surgically remove the epileptogenic zone (EZ), the regions
of the brain that initiate seizure activity. A precise identification
of the EZ is essential for surgical success but unfortunately,
current success rates range from 20-80%. Localization of the
EZ requires visual inspection of intracranial EEG (iEEG)
recordings during seizure events. The need for seizure oc-
currence makes the process both costly and time-consuming
and in the end, less than 1% of the data captured is used
to assist in EZ localization. In this study, we aim to leverage
interictal (between seizures) data to localize the EZ. We
develop and test the source-sink index as an interictal iEEG
marker by identifying two groups of network nodes from a
patient’s interictal iEEG network: those that inhibit a set of
their neighboring nodes (“sources”) and the inhibited nodes
themselves (“sinks”). Specifically, we i) estimate patient-specific
dynamical network models from interictal iEEG data and ii)
compute a source-sink index for every network node (iEEG
channel) to identify pathological nodes that correspond to the
EZ. Our results suggest that in patients with successful surgical
outcomes, the source-sink index clearly separates the clinically
identified EZ (CA-EZ) channels from other channels whereas
in patients with failed outcomes CA-EZ channels cannot be
distinguished from the rest of the network.

I. INTRODUCTION

Epilepsy is a chronic neurological disorder characterized
by unprovoked, recurrent seizures. Although about 70%
of patients diagnosed with epilepsy respond positively to
medication, 30% have seizures that cannot be controlled
with drugs [1]. The most effective treatment for medically
resistant epilepsy (MRE) is surgical removal or disconnection
of the epileptogenic zone (EZ), the region, or network of
regions, of the brain that initiate seizure activity [2]. A
precise identification of the EZ is essential for surgical
success, but unfortunately current success rates vary, ranging
from 20-80% [3].

Before the surgery, patients undergo a thorough evaluation
process to determine the location of the EZ. When non-
invasive methods (e.g. electroencephalography (EEG) and
neuroimaging modalities) are inconclusive in localizing the
EZ, invasive monitoring with intracranial EEG (iEEG) is
often needed. Then, the patient remains in the hospital for
several days to weeks waiting for a sufficient number of
seizure (ictal) events because the current clinical standard
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entails analyzing multiple of these events, looking for ab-
normal epileptic signatures, in order to localize the EZ. The
iEEG channels that show the earliest signs of these signatures
are generally identified as the EZ. Although clinicians also
inspect interictal (between seizures) data to look for epileptic
activity such as interictal discharges, these discharges have
not been proven to be reliable iEEG markers of the EZ and
thus the gold standard predominantly relies on inspecting
seizure events. As such, more than 99% of the iEEG record-
ings captured invasively from patients are ignored.

In recent years, epilepsy has been increasingly concep-
tualized as a network disorder rather than a single source
of pathology in the human brain [4]–[6]. Intracranial EEG
offers a unique opportunity to observe rich epileptic cortical
network dynamics, which are only visible to the naked eye
during seizures. However, the need for seizure occurrence
makes localization of the EZ a costly and time-consuming
process and poses an increased risk to patients [7]. The
process is also subjective, as no iEEG markers are used by
clinicians to specifically assist in identifying the EZ.

In this study, we aim to leverage data captured between
seizures to localize the EZ. We hypothesize that when a
patient is not having a seizure, it is because the EZ is being
inhibited by neighboring regions. We thus will develop and
test a new interictal iEEG marker of the EZ by identifying
two groups of nodes from a patient’s interictal iEEG net-
work: those that are continuously inhibiting a set of their
neighboring nodes (denoted as “sources”) and the inhibited
nodes themselves (denoted as “sinks”). Specifically, we will
develop a computational tool that i) estimates patient-specific
dynamical network models from interictal iEEG data and
ii) uses source-sink connectivity properties of the models to
identify pathological nodes (iEEG channels) in the network
that correspond to the EZ. We apply our algorithm to inter-
ictal iEEG data from 6 patients and evaluate performance by
comparing the EZ channels identified by our algorithm to
those identified by clinicians.

II. METHODS
A. iEEG Dataset

The data analyzed in this study were stereotactic EEG
(SEEG) recordings from six patients treated at the Cleveland
Clinic. All patients have focal MRE and underwent robotic
stereotactic placement of depth electrodes for extra-operative
monitoring followed by laser ablation. Successful surgical
outcomes were defined as seizure free (Engel class I [8]))
and failure outcomes as seizure recurrence (Engel classes
II-IV) at 12+ months post-operation. Three patients had
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successful outcomes and three had failed outcomes. For each
patient, the clinical team identified the iEEG channels they
hypothesized as EZ (CA-EZ). The data were recorded using
the Nihon Kohden diagnostic and monitoring system (Nihon
Kohden America, Foothill Ranch, CA, USA) at a sampling
frequency of 1 kHz. For each patient, we analyzed one
interictal snapshot (typically recorded hours before seizure
events) and one seizure snapshot that consisted of the seizure
event as well as a few minutes before and after seizure. All
data were acquired with approval of the Cleveland Clinic
Institutional Review Board. More details about the dataset
are presented in Table I.

B. Data Preprocessing

The data were bandpass filtered between 0.5 and 300 Hz
with a fourth order Butterworth filter, and notch filtered
at 60 Hz. A common average reference was applied to
remove common noise from the signals. All iEEG channels
not recording from grey matter or otherwise deemed “bad”
(e.g., broken or excessively noisy) by visual inspection were
discarded from each patient’s dataset.

C. Dynamical Network Models

The dynamical network models (DNMs) are generative
models that characterize how each iEEG channel dynami-
cally interacts with the rest of the network. The interictal
DNM took the form of a linear time-varying (LTV) model
which was constructed by forming a sequence of linear time-
invariant (LTI) DNMs derived for each 500 msec window of
the data. Each LTI model was defined as:

xxx(t +1) = AAAwxxx(t) (1)
where xxx(t)εRNx1 is the state vector and represents the

implanted iEEG channels, AAAwεRNxN is the state transition
matrix computed from window w and N is the number of
iEEG channels. In our previous work, we showed how DNMs
can be derived using least squares estimation and that they
accurately reconstruct iEEG time series [9].

D. Source-Sink Hypothesis

We defined two special types of nodes in the iEEG
network. A node is a “source” if it has a high influence on
other nodes in the network but is not highly influenced by the
rest of the network, and a “sink” if it is highly influenced by
the activity of other nodes, but does not have a high influence
on others. This is reflected by the rows and columns of AAAw.
Sources are channels that have high values in their columns
but low values across their rows, whereas sinks have high
row values and low column values.

An epilepsy patient has a seizure when the EZ is triggered,
and the EZ nodes work together to initiate and spread the
seizure activity to neighboring regions. On the other hand,

TABLE I
PATIENT DEMOGRAPHICS.

Number
of Patients

Sex
(M/F)

Surgery Age
(Years)

MRI
(NL/ABN)

Number of
Contacts

Success 3 2/1 28±13 2/1 67±21
Failure 3 2/1 31±12 2/1 110±30

NL = MRI normal, ABN = Abnormal findings on MRI.

Fig. 1. A. N-channel iEEG network example. B. Corresponding AAA matrix
in window w. C. 2D source-sink representation of the network with sink
index (sinki), source influence (in f li) and sink connectivity (conni) labeled.

seizures are suppressed when the EZ is effectively inhibited
by its neighboring regions. In terms of sources and sinks,
we hypothesized that EZ nodes are sources right before a
seizure but become sinks at rest. From a pathological stand-
point, the source-sink hypothesis is supported by clinical
evidence based on elevated levels of glutamate and glutamate
transporters in patients with epilepsy [10], [11]. A recent
iEEG study also provided further evidence by demonstrating
a high inward-directed connectivity to the EZ from resting
state fMRI [12].

Although iEEG provide a much more direct measure of
local neuronal population activity compared to traditional
EEG, each iEEG channel records the activity of about half
a million neurons [13]. Consequently, the DNMs cannot
distinguish between excitatory and inhibitory connections in
the iEEG network. Thus, we only quantified the strength of
the connection between two nodes, hereafter referred to as
the amount of “influence” one node has on another.

E. Source-Sink Analysis

For each patient, the DNMs were estimated in non-
overlapping 500 msec windows of the iEEG data to obtain a
sequence of AAA matrices over time, AAAw, wε[1,2, ..,T ], where
T is the number of 500 msec windows. In each AAAw (Fig. 1B),
row i represents the amount of influence the rest of the
network has on channel i in window w, and column j
represents how the activity of channel j influences the rest
of the network.

1) Identifying Top Sources and Sinks: Next, we identified
the top sources and sinks from AAAw. The extent of each chan-
nel’s source/sink behavior can be quantified by computing
the total influence to and from each channel, defined as the
sums of the columns and rows of abs(AAAw), ranked against
each other (rank 1/N indicates smallest sum, rank 1 is largest
sum). When drawn in the source-sink 2D space (Fig. 1C),
sources are channels located at the top left, whereas sinks
are located at the bottom right.

2) Computing Source-Sink Indices: Once the top sources
and sinks were identified, we computed a source-sink index,
ss, for each channel to find the channels in the hypothesized
source-sink EZ (SS-EZ). The source-sink index is the prod-
uct of three metrics subject to the source-sink hypothesis.
For each channel i, in each window w, we quantified the
following metrics:

Sink Index: The first criterion for EZ nodes is being a top
sink. The sink index captures how close a node is to the ideal
sink, which is defined as a node whose row rank is 1 and
column rank is 0 (see Fig. 1C, pink star). The sink index
was computed as:
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sinkw
i =
√

2−||(ri,ci)− (1,0)|| (2)
where ri and ci are the row and column ranks of channel i,
respectively. The larger the sink index, the more likely the
channel is a sink.

Source Index: Similar to the sink index, the source index
captures how close a channel is to the ideal source (blue star
in Fig. 1C):

sourcew
i =
√

2−||(ri,ci)− (0,1)|| (3)
Source Influence: The second criterion requires EZ nodes

to be highly influenced by top sources. The source influence
score quantifies how much the top sources influence channel
i and was defined as:

in f lw
i =

N

∑
j=1

Ai j ∗ source j (4)

Sink Connectivity: The third EZ criterion is high connec-
tivity to other sinks. The sink connectivity index quantifies
the strength of connections from the top sinks to channel i:

connw
i =

N

∑
j=1

Ai j ∗ sink j (5)

All metrics are normalized by maximum value.
Source-Sink Index: Finally, a source-sink activation index

was computed for each iEEG channel as:
ssw

i = sinki ∗ in f li ∗ conni (6)
In line with the source-sink hypothesis, ssw

i is high if all
three indices are high. Therefore, we expected EZ nodes to

have a high source-sink index, but non-EZ nodes to have a
lower index, in patients with successful surgical outcomes.

III. RESULTS

1) Identifying Hypothesized Source-Sink EZ (SS-EZ):
We defined the top sources/sinks in the iEEG network for
each patient as the 10% of channels exhibiting the strongest
source/sink behavior at rest (interictally). See Fig. 2B and F
for examples of the 2D source-sink space for one success and
one failure patient, respectively. In patients with successful
surgical outcomes, the CA-EZ channels are expected to be a
subset of the top sinks (Fig. 2B). Pink/blue arrows indicate
the strongest connections from each top source/sink and the
channels they point to. SS-EZ channels were defined as the
subset of sinks that at least one source and one sink connect
to. In general, the top sources and sinks point to the SS-EZ
channels in success patients (Fig. 2B), whereas they may
also connect to other channels in patients with failed surgical
outcomes (Fig. 2F).

2) Computing Source-Sink Indices: For each patient, we
computed each channel’s source-sink index (eq. (6)) in 500
msec windows of one interictal and one seizure snapshot
(Fig. 2C and G). Note that the two snapshots are not
consecutive in time as the interictal snapshot is typically
recorded hours before the seizure event. As Fig. 2C shows,
the CA-EZ channels (3 out of 3) are top sinks in the iEEG
network and the patient had a successful surgical outcome. At

Fig. 2. Two patient examples. A. iEEG implantation map (successful outcome). B. 2D source-sink space. Solid black dots represent top sources (top left)
and sinks (bottom right) and red squares represent the CA-EZ. The most influential connections from sources (blue arrows) point to the sinks. Strongest
connections from sinks (pink arrows) point to other sinks. C. Source-sink index of every channel during interictal (left) and ictal (right) periods, separated
by the solid yellow line. Channels are arranged from highest to lowest average interictal ssi. CA-EZ channels are colored red. Only the top 30% of channels
are shown for better visualization purposes, and all channels not shown have low ssw

i values. D. Average source-sink index of four groups of channels:
CA-EZ, CA-NEZ, SS-EZ and SS-NEZ. In this success patient there is perfect agreement between the CA-EZ and SS-EZ. E. iEEG implantation map
(failure outcome). F. 2D source-sink space. In this failure patient, top sources point to nodes other than top sinks. Top sinks also point to these other nodes.
G. Source-sink index of every channel over time. Only 2 out of 13 CA-EZ channels have a high source-sink index. H. Average source-sink index of the
four groups. In this failure patient CA-EZ cannot be distinguished from CA-NEZ.
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rest these channels (in particular L’3) have a high source-sink
index, suggesting that they are top sinks strongly influenced
by the top sources. However, during and right after seizure,
the same channels have a low index, i.e. they are exhibiting a
strong source-like behavior. In contrast, only a small subset
(2 out of 13) of CA-EZ channels are amongst the top sinks
in a patient with a failed surgical outcome (Fig. 2G).

The temporal source-sink index modulation is summarized
in Fig. 2D and H. We computed the average ss for four
groups of interest: i) CA-EZ channels, ii) all other channels
not labeled as CA-EZ (CA-NEZ), iii) SS-EZ, and iv) all
other channels not labeled as SS-EZ (SS-NEZ). Note that
the sets are not disjoint, i.e. groups iii) and iv) are comprised
of channels from i) and/or ii). Each curve was obtained by
computing the average ss of each channel group, in each
window. The curves were smoothed by computing the index
across 10 second windows instead of 500 msec. As Fig. 2D
shows, the CA-EZ channels follow a very similar temporal
modulation pattern as the SS-EZ, and have a higher ss than
the rest of the network. However, this does not hold true for
the failure patient (Fig. 2H), where the mean ss of the CA-
EZ is much lower than that of the SS-EZ at rest. Moreover,
it is slightly lower than the mean index of the rest of the
channels in the network.

Finally, Fig. 3 compares the temporal source-sink index
modulation in success versus failure patients. For each pa-
tient, ss was computed in four predefined windows: a) a 30
second window of the interictal recording, b) 60-30 seconds
before the seizure event, c) during the seizure event, and
d) 60-90 seconds after the end of seizure. For each set of
channels, indices were normalized to the average ss of the
entire network at rest (window a). At each time point, we
then computed the mean ± standard deviation of ss across
the three success patients (top) and the three failure patients
(bottom). In the success patients, the CA-EZ and the SS-
EZ demonstrate the same dynamic trends and have a higher
source-sink index compared to the rest of the channels in the
network. The same cannot be said about the failure patients,
as the CA-EZ channels have a much lower ss compared to
the SS-EZ and are not separable from the CA-NEZ channels.
Note however, that the SS-EZ and SS-NEZ curves follow
very similar dynamics in both groups of patients.

IV. DISCUSSION

In this study, we tested the source-sink index as an
interictal iEEG marker of the EZ. We computed the source-
sink index for all implanted iEEG channels and examined
its properties at rest and during seizures. In patients with
successful surgical outcomes, the magnitude and dynamics
of ss across the SS-EZ channels highly correlated with the
CA-EZ, and clearly separated these channels from the rest
of the network. In patients with failure outcomes however,
there was little to no ss modulation of CA-EZ and CA-NEZ
channels and these groups could not be distinguished from
one another.

Future work involves testing and validating the source-sink
algorithm on a larger set of patients as well as further quan-

Fig. 3. Temporal modulation of the source-sink index in success versus
failure patients. Average ss of four groups of channels: CA-EZ, CA-NEZ,
SS-EZ and SS-NEZ. Each curve shows the mean ± std across 3 success
patients (top) and 3 failure patients (bottom).

tifying the source-sink modulation as the brain transitions
from an interictal to an ictal state. Although preliminary, our
results suggest that the source-sink index, a metric entirely
based on the properties of the iEEG network at rest, captures
the characteristics of the regions responsible for seizure
initiation and may be a promising marker of the EZ.
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