
  

  

Abstract— Alzheimer’s Disease (AD) is the sixth leading cause 
of death in the US. AD causes significant disability due to the 
devastating impact on the patients’ day-to-day living activities 
and their loss of independence. One such day-to-day activity is 
driving, a complex task that requires attention, concentration, 
the ability to follow particular steps, react to stimuli promptly, 
and the ability to perceive and interpret visual-spatial 
information, all of which can be impaired in AD. Therefore, to 
ensure the safety of AD patients and other drivers, it is important 
to develop accurate and low-cost diagnostic tools to assess 
patients’ fitness-to-drive. In this study, we develop machine 
learning (ML) models to predict fitness-to-drive using the 
electroencephalogram (EEG) technique of event-related 
potential (ERP). Specifically, we develop random forest (RF) 
models using EEG signals in early-stage AD patients and age-
matched controls and conduct numerical experiments to predict 
fitness-to-drive and other driving performance metrics, 
collected from driving simulator data. Our results show that RF 
models predict patients' fitness-to-drive with AUC=0.83 and 
provide accurate measures of other driving performance 
metrics. Therefore, ML and ERP offer a valuable approach to 
assess driving safety for patients with early AD symptoms in the 
laboratory setting.  

I. INTRODUCTION 

Alzheimer’s Disease (AD) is a neurodegenerative condition 
that causes progressive impairments in multiple cognitive 
domains, eventually resulting in dementia. AD has become 
more prevalent and is the most common form of dementia due 
to the growing aging population across the globe [1]. It is 
estimated that between 60-70% out of around 50 million 
people with dementia (around twice the population of Texas) 
have AD. In the US, about 5.8 million people aged 65 and 
older live with AD, of which, around 80% are 75 years old and 
older [2]. 

Although a vast number of individuals and their families are 
affected by AD, a diagnosis of AD at an early stage is often 
difficult. Usually, a definitive diagnosis is made once 
cognitive impairment compromises day-to-day living 
activities. Early signs of the disease include forgetfulness of 
recent events, word-finding difficulties, and deficits in visual-
spatial perception that can present as getting lost or disoriented 
in familiar places. The steady decline in cognition impairs AD 
patients’ ability to function independently. Consequently, this 
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reduces the life expectancy of AD patients and is ranked the 
6th leading cause of death in the U.S. [3]. 

Although currently there is no cure available for AD, early 
detection is important as certain medications may help treat 
symptoms, allowing for retaining functionality and the ability 
to live independently for a longer period [4]. In addition to 
standardized neuropsychological testing, which is the gold 
standard for clinical diagnoses, brain imaging and spinal fluid 
biomarkers are successfully used in preclinical detection [5].  
Recently, non-invasive tools such as electroencephalography 
(EEG) and the EEG technique of event-related potentials 
(ERPs) have shown promise in the early detection of AD [5].  
These techniques are often leveraged with machine learning 
(ML) models that allow for eliciting hidden patterns from data. 
For instance, classification methods such as the support vector 
machine (SVM) and random forest (RF) have shown great 
promise in detecting AD from EEG and ERP data [5, 6]. The 
studies are important as the combination of ML and EEG 
provides a cost-effective and non-invasive way for early 
detection of AD [5]. 

AD negatively impacts patients’ day-to-day living activities 
[7]. One of such day-to-day activities is driving [8], which 
requires attention, concentration, the ability to follow 
particular steps and to react to stimuli promptly, all of which 
can be impaired due to AD.  Driving also relies heavily on 
visual-spatial perception, a domain that is selectively affected 
in the early stages of the disease and may even precede the 
onset of memory deficits.  Drivers with AD may not recall road 
regulations and routes. AD patients may also not see or 
perceive the distance to other cars or infrastructure and may 
not recognize the pattern of motion called optic flow that 
allows the determination of distance, speed, and direction of 
motion. More importantly, the unsafe driving status of AD 
patients can progress further as the disease develops [9].  

Fitness-to-drive for AD patients can be determined using 
clinical interviews, neuropsychological assessment, and/or 
driving simulator rides [9]. Hence, as expected, driving 
simulators, which are safe and accurate methods of testing 
driver interactions, have shown to be effective in evaluating 
and quantifying various characteristics of AD. For instance, 
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Etienne et. al. [10] evaluates the executive functions associated 
with the impairment of mental flexibility in the early stages of 
AD and its impacts on driving activity. The study finds that 
AD patients have significantly lower performances in tests 
concerning their reaction times (RT) and the number of errors. 
Pavlou et. al. [11] indicate that drivers with cerebral diseases 
drive at lower speeds compared with the control group drivers. 
The results show that drivers with cognitive impairments 
significantly deviate from the general population [11]. This 
is especially the case for AD patients that drive significantly 
slower than the control patients by 68%. Stinchcombe et. al. 
[12] compares errors at intersection behavior in a driving 
simulator among mild AD drivers and healthy control 
drivers.  Results indicate that across all types of intersections, 
mild AD drivers exhibit a greater number of errors relative to 
controls. The studies demonstrate that driving simulators can 
provide reliable measures of the differences between early-
stage AD patients and controls, and they can indeed be directly 
used to accurately stratify the subjects into their corresponding 
cohorts [13]. 

To ensure the safety of AD patients and other road users, it 
is important to develop accurate and low-cost diagnostic tools 
to assess patients’ fitness-to-drive in the laboratory setting. 
Driving simulators can be costly ranging from $20,000 for a 
desktop system to $100,000,000 for a full-vehicle simulator 
[14]. In addition, diving simulators are not widely available. 
By comparison, EEG is a relatively low-cost and non-invasive 
tool that is widely available in hospitals, clinics, and research 
facilities and is highly objective and quantifiable. Therefore, 
in this study, we aim to leverage the EEG technique of ERPs 
to predict fitness-to-drive and other driving performance 
metrics.  To do so, we leverage ML in a cohort of AD patients 
and age-matched controls. Specifically, we collect patients’ 
EEG signals using visual stimuli that simulate the patterns of 
motion seen by individuals as they make translational 
movements in the environment during ambulation or driving. 
We used the EEG technique of ERPs, which allows for the 
extraction of EEG signals associated with a specific event 
(e.g., onset of motion). We also assessed the participant’s 
performance scores from a driving simulator. Then, employ an 
ML model, namely RF, to build the bridge between EEG 
signals and driving performances. We conduct several 
numerical experiments to assess the prediction accuracy of the 
RF model. We are predicting fitness-to-drive without knowing 
the cognitive status. This is so that the test can be applied to 
any subject seen in the clinic setting. As such, one of the main 
practical contributions of our study is to assess driving safety 
for patients with early AD symptoms in the clinical setting 
using the low-cost and safe method of ERPs. 

II. METHODOLOGY 

A. Data Description  
In this study, we use two datasets, where the data are 

collected from a total of 29 subjects, of which 15 have early-
stage AD and 14 are age-matched controls. All subjects 
provided informed consent prior to participation and all study 

procedures were approved by the University of Virginia 
Institutional Review Board. The first dataset includes 
subjects’ EEG signals, collected using a 64-channel cap at 
1000s/s for sampling, where subjects undergo visual ERP 
trials. EEG data are filtered using low and high pass filters at 
30Hz and 0.1Hz. The temporal resolution of each EEG signal 
is measured and filtered by one millisecond. Five events are 
used for the visual ERP paradigm: fixation, pattern onset, 
motion onset, and change including acceleration and 
deceleration, and catch [5]. Each subject underwent 360 to 
400 trials during approximately a 45-minute evaluation 
window. The first visual motion stimulus presented is the 
station fixation point lasting for 1000 milliseconds.  The next 
stimulus is a station of random dots, named pattern onset, 
lasting for 1500 milliseconds. Following that is the motion 
onset which shows radial dot motion for 500 milliseconds. 
Then, there is a change in speed or direction for 1000 
milliseconds, randomized at 37.5% of the trials for 
acceleration or deceleration in speed (each) and 25% of the 
trials for change in the direction, referred to as catch. At the 
end of the stimuli, stationary dots follow, namely the motion 
offset, lasting for 1500 milliseconds. The oddball paradigm 
was used to measure the reaction of the catch events [5].  

The second dataset includes the performance scores of the 
same subjects from the driving simulator. Data are collected 
using driving simulations in a mid-range driving simulator 
at the University of Virginia. The Driver Guidance System 
(DGS-78) is employed for the driving simulation. It surrounds 
the patient with a 210° field of view. The driving simulator 
imitates the inside of a vehicle, including seatbelt, dashboard, 
steering wheel, mirrors, and all other usual controls [13]. The 
assessment of driver capability is conducted by 125 
operational driving variables that evaluate subjects’ visual, 
motor, cognitive, and executive function abilities. Time-based 
and score-based measurements are both included in the 
variables. Finally, the driving simulator provides a composite 
driving score, where a score less than 70 reflects the 
incompetence to drive. 

B. Data Preprocessing 
First, we focus on three events from the ERP trials, 

namely, acceleration, pattern onset, and catch [5]. This is 
because based on our past study, EEG data collected from 
acceleration (right frontotemporal activation), pattern onset 
(right lateralized and temporal regions), and catch (right-
lateralized posteriorly) provide the best model performance 
in early AD detection [5]. Second, for each patient, we 
aggregate the data collected across the trials under the same 
event. For each patient, there are 360 to 400 trials for each 
event. An average was taken over all trials for each of the 64-
channel for acceleration, pattern onset, and catch.  

Finally, we extract features from each of the 64 channels, 
under the three events, for each patient. Features included 
minimum, maximum, mean, standard deviation, skewness, 
median, and variance of the EEG time series. Such a feature 
extraction approach is effective in capturing the temporal 
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changes of time series [15]. The features are calculated from 
the data collected during 600 milliseconds after the stimulus. 
In total, we extracted 64 × 7 = 448 features from each event 
for each patient. Then, we select a subset of features to 
construct the model based on features importance from 
preliminary experiments. 

C. ML Prediction  

In this study, we use an RF classifier and regressor to 
predict patient driving performance. RF combines the 
prediction results of numerous decision trees and takes the 
majority vote as the final verdict [16]. As a flexible ML 
model, RF can be implemented in both classification and 
regression problems. In addition, RF is less likely to over-fit 
and can provide feature importance evaluation [16].   

In this study, we conduct two experiments. First, we build 
an RF model on the preprocessed EEG data to classify if a 
patient is fit-to-drive using the composite driving score. The 
response variable is fitness-to-drive. We use 1 and 0, 
respectively, to denote a patient is fit-to-drive (composite 
driving score of 70 or above) or not. Patients with an RF-
estimated probability of 0.5 or above are predicted to be fit-
to-drive. 

The second experiment in this study looks at other 
response variables from the driving simulation. Specifically, 
three response variables are included, namely the ‘pothole 
avoidance steering average,’ ‘the long duration slow 
detection,’ and ‘total correct responses.’ The pothole 
avoidance steering average indicates how well the patient 
reacts when approaching a pothole during the driving 
simulator. The long duration slow detection is the total 
amount of time it takes to slow down in response to the lead 
car’s brake lights activating for 3 seconds. The total correct 
responses are the total number of times an individual 
responds appropriately and accurately, e.g., turned to avoid a 
pothole, and avoided the pothole. These variables are among 
the strongest contributors to the composite driving score and 
significant indicators of driving safety[13] [15] [16].  

D. Model Evaluation & Metrics 

For each event, the RF model uses 70% of the patients to 
train and 30% to test. The training and testing patients are 
chosen randomly. The numbers of AD patients and control 
patients in the training dataset are kept balanced to improve 
learning. The number of trees in the RF model is selected 
using the out-of-bag (OOB) error and is set to 100 trees. When 
testing, we conducted bootstrapping 100 times to calculate the 
mean performance and 95% confidence interval (CI).  

For the experiment, the model is evaluated using six 
different classification metrics including sensitivity, 
specificity, precision, accuracy, F1 Score, and area under the 
curve (AUC). In the second experiment, we use mean squared 
error (MSE), root mean square error (RMSE), mean absolute 
error (MAE) and mean absolute percentage error (MAPE) to 
evaluate the performance of the regression model.   

III. RESULTS 

Table I shows presents the descriptive statistics of the 
subjects for the AD and the control groups. As seen in the 
table, the composite score is overall lower for AD patients, 
compared with controls. 

TABLE I. DESCRIPTIVE STATISTCIS.  

Characteristics  Overall  AD Controls 
Subjects (%)  29 (100)  15 (52)  14 (48)  

Male (%)  14(48)  6(40)  8(57)  
Age (yr.), mean 

(IQR)  
74.6 (61-85)  74.9(61-85)  74.2(63-82)  

Composite score, 
mean (IQR)  

58.4(-38, 117)  24.4(-38-91)  94.8(41-117)  

 
  Table II presents the performance metrics of the RF 
classifier in the first experiment. The table shows the mean 
and 95% CI for acceleration, catch, and pattern onset events. 
The acceleration classification showed the best results 
compared with catch and pattern onset, with 81% sensitivity 
and specificity, and an F1 score, AUC, and accuracy of 0.8, 
0.83, and 80%. This suggests that the model built using EEG 
data collected under the acceleration event can confidently 
predict the subject’s fitness-to-drive. 

TABLE II. PERFORMANCE METRICS OF RF CLASSIFIER FOR THE FIRST 
EXPERIMENT. MEAN AND 95% CI ARE PROVIDED.  

Events Sensitivity Specificity Precision 
Acceleration 0.81 (± 0.03) 0.81 (± 0.03) 0.80 (± 0.04) 

Catch 0.81 (± 0.03) 0.78 (± 0.03) 0.75 (± 0.03) 
Pattern Onset 0.81 (± 0.03) 0.75 (± 0.02) 0.73 (± 0.03) 

Events F1 Score AUC Accuracy 
Acceleration 0.80 (± 0.03) 0.83 (± 0.03) 0.80 (± 0.03) 

Catch 0.77 (± 0.02) 0.70 (± 0.03) 0.77 (± 0.02) 
Pattern Onset 0.76 (± 0.03) 0.66 (± 0.04) 0.76 (± 0.02) 

  Fig. 1 presents the receiver operating characteristics curve 
(ROC) of the acceleration event. When plotting the ROC 
curve, all testing patients are used without bootstrapping. The 
ROC curve remains consistent with the results in Table II, 
with an AUC score of 0.90. The jagged shape of the ROC 
curve is most likely due to the small number of patients.  

Table III provides a confusion matrix under the acceleration 
event when all testing patients are used without bootstrapping. 
In Table III, out of five AD patients and four controls in the 
testing set, one in each class was predicted incorrectly. 
Therefore, the results are overall consistent across the two 
cohorts.   

The results of the second experiment are shown in  
Table IV. The results indicate that predicting the pothole 
avoidance steering average using the acceleration event leads 
to the best performance, with a minimal 0.0145 MSE, 0.1202 
RMSE, 0.0797 MAE, and 0.3585 MAPE.  Fig. 2 provides the 
detailed result for the predicted pothole avoidance steering 
scores against the corresponding true scores. As seen in figure 
2, apart from a few exceptions, most of the predicted scores 
align very well with the true scores. 

2384



  

 
Figure 1. ROC curve for predicting fitness-to-drive using data from the 
acceleration event. The AUC score is 0.90.  

TABLE III. CONFUSION MATRIX OF RF CLASSIFIER FOR ACCELERATION 
WITHOUT BOOTSTRAPPING.  

 True condition 
fit-to-drive unfit-to-drive 

Predicted 
condition 

fit-to-drive 4 1 

unfit-to-drive 1 3 

   

 
Figure 2: True and predicted score of pothole avoidance. An RF regressor is 
trained using the acceleration data to make predictions. 

TABLE IV. PERFORMANCE METRICS OF RF REGRESSOR FOR THE 
SECOND EXPERIMENT. 

Pothole Avoidance Steering Average   
Events MSE RMSE MAE MAPE 

Acceleration 0.0145 0.1202 0.0797 0.3585 
Catch 0.0169 0.1298 0.0945 0.4061 

Pattern Onset 0.0147 0.1212 0.0956 0.3814 
Long Duration Slow Detection   

Events MSE RMSE MAE MAPE 
Acceleration 0.0280 0.1676 0.1488 0.1781 

Catch 0.0274 0.1655 0.1469 0.1755 
Pattern Onset 0.0329 0.1815 0.1635 0.2006 

Total Correct Responses   
Events MSE RMSE MAE MAPE 

Acceleration 4.4235 2.1032 1.7244 0.1268 
Catch 2.5509 1.5971 1.2689 0.0968 

Pattern Onset 6.0386 2.4573 2.1512 0.1592 

IV. CONCLUSION 
In this study, we employ an ML approach to predict the 

fitness-to-drive for subjects with and without early AD using 
the EEG technique of ERPs. Specifically, we train RF models 
with subjects’ EEG signals collected during three events and 
conducted two experiments with various response variables. 
The results suggest that RF predicts subjects’ fitness-to-drive 
with great accuracy, with an AUC score of up to 0.83. The 

results are promising, and future research will be needed. 
There is still more processing that will need to happen before 
implementing in clinical practice. In summary, using ERPs 
and ML shows great promise in evaluating fitness-to-drive in 
AD patients, providing a low-cost and non-intrusive method 
to ensure their safety. The two experiments are different 
approaches to determine fitness-to-drive in AD patients.  
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