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Abstract— Significant longitudinal changes in metrics
derived from diffusion weighted magnetic resonance (MR)
images of the brain have been observed in athletes subject
to repetitive non-concussive head injuries (RHIs). Accurate
alignment of longitudinal scans of a subject is an important
step in detecting and quantifying these changes. Currently,
tools such as DSI Studio [1], FreeSurfer [2], and FSL [3]
perform pairwise rigid registration of all scans in a longitudinal
sequence to the first time-point scan (or to another reference
scan or template). While the rigid transformations obtained
using this strategy can be computed in a manner that enforces
inverse consistency, for the case of three or more scans,
the transformations are not transitive. This can lead to
discrepancy in the rigid transformations that can be measured
in physical units. Using a diffusion MRI dataset collected
and analyzed as part of a larger study in [4], [5], [6], we
illustrate this discrepancy, and we show how it can lead to
uncertainty in local/regional estimates of diffusion metrics
including fractional anistropy (FA), mean diffusivity (MD),
and quantitatve anisotropy (QA). Additionally, we propose a
method to perform transitive longitudinal rigid registration
of a sequence of scans in a manner that guarantees that the
discrepancy in the transformations will be eliminated.

Clinical relevance— This paper establishes that standard
processing pipelines for performing longitudinal analysis of dif-
fusion MR images of the brain exhibit registration discrepancies
that can be eliminated.

I. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI),
also known as Diffusion-Weighted Imaging (DWI), is the
most widely used imaging modality for studying the struc-
tural connectivity of the human brain, enabling investigations
into the effects of disease on brain connectivity [7], [8],
changes in structural connectivity during development and
neurodegeneration [9], [10], [11], the organization of brain
networks [12], [13], and the relationship between brain
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structure and function [14], [15]. Echo-planar images (EPIs)
collected in DWI provide directional information about the
diffusion of water molecules in the brain. In cerebral white
matter (WM), water diffuses freely along the direction of
fibers while being restricted in the transverse direction [16],
[17]; hence, quantifying diffusion patterns enables inferring
properties of WM structure.

Under the umbrella of DWI, Diffusion Tensor Imaging
(DTI) fits local multivariate normal distributions to dewarped
EPI data, generating a spatially varying field of tensors
(covariance matrices) whose dominant eigenvectors can be
interpreted as encoding local fiber directions [18], [19].
Quantitative indices like fractional anisotropy (FA) and mean
diffusivity (MD) can be computed from each tensor, pro-
viding local information related to microstructure integrity
and membrane density. One clinical example of where quan-
titative indices from DTI have yielded key insights is in
athletes subjected to repetitive non-concussive head injuries
(RHIs). Studies have shown that American football players
subjected to RHIs experienced significant changes in FA
and MD observed in images acquired over the course of
a football season when compared to healthy controls [20].
Moreover, changes in FA from pre- to post-season were
found to be positively correlated with several helmet impact
measures (computed from helmet-mounted accelerometers)
[4] and with declines in several neurocognitive measures [6].
These findings have been confirmed by others using DTI to
examine RHIs in boxing [21], ice hockey [22], soccer [23],
and American football [24].

These studies on RHIs have all investigated global longi-
tudinal changes in indices derived from DTI. It would also
be beneficial to investigate local and/or regional longitudinal
changes in a subject if the longitudinal scans of that subject
can be accurately aligned. Furthermore, if the scans of
multiple subjects can be accurately registered to a template
(e.g., MNI ICBM-152 [25]), local and/or regional inter-
subject comparisons between longitudinal changes in FA,
MD, or other DTI-derived indices can be performed. Freely
available research software such as FSL [3], FreeSurfer [2],
and DSI Studio [1] provide functionality that enables users
to register scans according to rigid, affine, and/or locally
deformable transformations.

DSI Studio in particular [1] has also emerged as a powerful
tool for exploring more sophisticated reconstruction methods
than DTI, including q-ball imaging (QBI) [26], diffusion
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spectrum imaging (DSI) [27], generalized q-sampling imag-
ing (GQI) [28], and q-space diffeomorphic reconstruction
(QSDR) [29], all of which we consider as being under the
umbrella of DWI. As opposed to using diffusion tensors,
which are inadequate for resolving crossing or “kissing”
fibers, these methods use spin distribution functions (SDFs)
and/or orientation distribution functions (ODFs) to model
local diffusion. This enables indices such as quantitative
anisotropy (QA) to be computed locally in any desired
direction, not just in a single dominant direction as in FA.

In many of the RHI studies that have explored indices
derived from DTI, three or more longitudinal scans are
available for each subject; for example, for one or more
years, each subject may undergo a pre-season scan, an
immediate post-season scan, and a scan after a post-season
rest period. To perform intra-subject registration of a series
of three or more scans, it is reasonable to assume that the
scans differ geometrically by rigid transformations (notwith-
standing the possibility of cerebral edema, growing tumors,
etc.). Practically, DSI Studio, FreeSurfer, or FSL could be
used to perform pairwise rigid registration of all scans to the
first scan in the series (or to some other selected scan or tem-
plate). However, such a strategy does not guarantee optimal
registration across all scans in a series: even if the second and
third scans are each optimally registered to the first scan, it
is very likely that composing these transformations to create
a mapping from the third scan to the second scan will yield
a transformation that is inconsistent with the transformation
found had the third scan been optimally registered directly
to the second scan.

For three or more images, standard pipeline like DSI
Studio is only set up to perform pairwise rigid registration.
However, there are issues with transitivity of the rigid
transformations. In this work, we show via experiments the
practical impact of these issues (by measuring the discrep-
ancy/inconsistency in terms of physical units). In addition,
we also show the impact on the variability associated with
several image-specific measures, including FA, MD, and QA.

Furthermore, in response to these findings, we propose a
new method for simultaneous longitudinal rigid registration
of three or more scans that guarantees that this discrep-
ancy/inconsistency will be eliminated. As such, this proposed
method will enable the extension of the original white matter
integrity studies mentioned earlier.

II. PRELIMINARIES

Let {I1, . . . , In} be a sequence of images defined (in
physical coordinates) over R3, and define gj,i : R3 → R3,
gj,i(x) = R(j,i)x + t(j,i), to be a rigid transformation
with rotation matrix R(j,i) ∈ R3×3 and translation vector
t(j,i) ∈ R3 that maps coordinates of Ij into coordinates
of Ii. We denote I

gj,i
j to be the result of transforming

the image Ij according to gj,i; that is, Igj,ij : R3 → R,
I
gj,i
j (x) = Ij(gj,i(x)).

Suppose we have a set of regions {Ω1, . . . ,Ωn} in R3

over which we observe {I1, . . . , In}, for example, corre-
sponding to regions of brain tissue in DTI scans. If Ij is

transformed according to gj,i, the region Ωj is transformed
into Ω

gj,i
j = {gj,i(x) |x ∈ Ωj}. To quantify the similarity

between an image Ii and a transformed image I
gj,i
j over

the intersections of their regions of interest, we define a
cost function Ci,j(gj,i) = S(Ii, Ij ,Ωi,Ωj , gj,i). The average
similarity between all pairs of images in the sequence can
then be defined by:

C(G) =
1

n(n− 1)

∑
i6=j

Ci,j(gj,i) , (1)

where G = {gi,j | i = 1, . . . n; j = 1, . . . n; i 6= j}. In this
paper, we define S to be the correlation coefficient between
Ii and Igj,ij over Ωi ∩Ω

gj,i
j ; however, S could be chosen to

be any other similarity measure such as mutual information,
correlation ratio, negative mean squared difference, etc.

There are two properties of the transformations in G
that should be satisfied when longitudinal registration is
performed:
• Inverse consistency: gi,j = g−1j,i , ∀i 6= j.
• Transitivity: gi,j = gk,j ◦ gi,k, ∀i 6= j 6= k.

III. RELATED WORK

Over the years many methods have been proposed to han-
dle the registration of three or more images in the groupwise
setting. These methods have then been adopted to the longi-
tudinal setting when longitudinal studies for longer duration
became more common. One such approach is to create a
template from the available images and register each image
to that template. Joshi et al. [30] describe mathematically
an optimal technique to determine this template such that
each image requires minimal transformation. However, their
technique does not satisfy inverse consistency or transitivity.

Woods et al. [31] proposed one of the earliest techniques
to generate a transitive set transformations in groupwise
rigid image registration. Their method performs a posthoc
rectification of a set of pre-computed pairwise rigid trans-
formations by defining a discrepancy measure which is
minimized using Newton’s method; however, it does not
optimize any measure of image similarity in the rectification
step. Gass et al. [32] proposed a technique to rectify pre-
computed pairwise non-rigid deformations that iteratively
minimizes inconsistency between projections of gridpoints
using linear least squares, generating a set of approximately
transitive transformations. Christensen et al. [33] proposed a
method for pairwise inverse consistent nonrigid registration
by estimating forward and reverse transformations simulta-
neously and constraining them to be inverses of one another.
However, this method does not address transitivity of a set
of transformations. Geng et al. [34] perform nonrigid inverse
consistent groupwise registration with respect to an implicit
reference so as to avoid bias to a particular image.

The work most closely related to this paper is by Arganda-
Carreras et al. [35], which proposes a nonrigid scheme for
registering sequences of three images that is transitive and
approximately inverse consistent. Here, we focus on the rigid
registration case, enabling us to exactly satisfy both inverse
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consistency and transitivity, and we illustrate a framework
that is applicable to n ≥ 3 images in a sequence.

IV. METHODS

A. Pairwise Rigid Registration

In longitudinal registration of n images of the same
subject, the first image (I1) is often used as a reference,
and the subsequent images in the sequence are registered
to the first image. This can be achieved by maximizing the
corresponding C1,j’s to determine the optimal estimates of
gj,1 for j = 2, . . . , n. Each R(j,1) can be parameterized in
terms of its three Euler angles, for example, yielding a set
of 6 parameters representing each gj,1.

B. Inverse Consistent Pairwise Rigid Registration

In rigid registration, it is straightforward to ensure inverse
consistency. If we define gi,j(x) = R(i,j)x + t(i,j) so that
R(i,j) =

(
R(j,i)

)T
and t(i,j) = −

(
R(j,i)

)T
t(j,i), then gi,j

and gj,i are exact inverses of one another.
Noting that (1) can be rewritten as:

C(G) =
1

n(n− 1)

∑
i<j

Bi,j(gj,i) , (2)

where Bi,j(gj,i) = Ci,j(gj,i) + Cj,i(gi,j). Expressing both
gi,j and gj,i in terms of R(j,i) and t(j,i) allows us to perform
pairwise inverse consistent rigid registration by maximizing
each of the Bi,j’s with respect to the 6 parameters in gj,i.

C. Pairwise Rigid Registration Discrepancy

In pairwise rigid registration of a sequence of images
(whether inverse consistent or not), the transformations
obtained by maximizing the Ci,j’s or the Bi,j’s are not
transitive. This means that the transformation gi,j that would
be obtained by maximizing Ci,j or Bi,j is almost certainly
different from the transformation g̃i,j that would be obtained
by composing the transformations g−1j,k with gi,k relating Ii
and Ij to any other image Ik.

This nontransitivity leads to a discrepancy between the
position of gi,j(x) and g̃i,j(x), which in some situations can
be substantial. To quantify this discrepancy over a sequence
of images, we first define the pointwise discrepancy for an
image Ii at x with respect to images Ij and Ik as:

ηi,j,k(x) = ‖(gj,i ◦ gi,j)(x)− (gj,i ◦ gk,j ◦ gi,k)(x)‖ , (3)

where ‖·‖ is the Euclidean norm. The pointwise discrepancy
values can be integrated over Ωi to yield a discrepancy
measure ηi,j,k for an image Ii with respect to images Ij
and Ik. We then define the total mean discrepancy η for the
sequence of n images as:

η =
1

n(n− 1)(n− 2)

∑
i

∑
j 6=i

∑
k 6=i,j

ηi,j,k . (4)

D. Transitive Inverse Consistent Rigid Registration

In general, the transformations in G are neither inverse
consistent nor transitive. However, suppose we start with
only a subset Ĝ ∈ G given by Ĝ = {g2,1, . . . , gn,1}. The
remaining transformations in G can be constructed from
those in Ĝ via:

gi,j =

{
g−1j,i , i = 1 ,

g−1j,1 ◦ gi,1, i > 1 .
(5)

This construction guarantees both inverse consistency and
transitivity of the transformations in G. Therefore, by con-
struction, the resulting transformations will have discrep-
ancies ηi,j,k = 0 for all i, j, and k, and the total mean
discrepancy will be η = 0.

This observation suggests a method for performing tran-
sitive inverse consistent rigid registration of a sequence of
n images: by expressing C(G) as C

(
G
(
Ĝ
))

and defining

G
(
Ĝ
)

according to (5), the cost function (2) can be maxi-
mized with respect to the 6(n− 1) parameters of the rigid
transformations in Ĝ.

V. CASE STUDY: ATHLETES WITH RHIS

A. Data

To investigate the importance of inverse consistency and
transitivity in a longitudinal registration pipeline, we perform
a secondary analysis of a diffusion MRI data set that was
previously collected and analyzed by co-authors of this paper
as part of a larger study [4], [5], [6]. Over the course of two
football seasons, a total of 19 athletes from the University
of Rochester football team were recruited, along with 5
non-athletes from the general student body as controls. For
all subjects, diffusion MR images were acquired at base-
line/preseason (T1), immediately post-season (T2), and six
months post-season (T3). All the scans were acquired at the
Rochester Center for Brain Imaging on a 3T Siemens TIM
Trio scanner with a 32-channel head coil. Single shot echo
planar imaging was used (SS-EPI; 60 diffusion directions,
TR = 8900 ms, TE = 86 ms, b = 2000 s/mm2, 70 slices
for 2 × 2 × 2 mm3 image resolution) with 10 non-diffusion
weighted (b=0) volumes acquired throughout the acquisition
sequence. Of the 24 subjects, we only analyzed the data from
the 20 subjects that had a full set of scans available at T1,
T2, and T3.

B. Pre-Processing and Registration

For each subject, the raw DWI images from each scan
are processed using the pipeline shown in Fig. 1. First, eddy
current correction and B0-field inhomogeneity correction are
performed. Next, the corrected DWI scans are registered
using either pairwise rigid registration (branch A in Fig. 1)
or transitive inverse consistent rigid registration (branch B in
Fig. 1). The pairwise rigid registration can either be inverse
consistent, yielding a set of transformations G(pw−ic), or non-
inverse consistent, yielding G(pw−nic); the transitive inverse
consistent rigid registration yields a set of transformations
G(tr−ic). With the resulting set of transformations from either
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Fig. 1. Pre-Processing and Registration Pipeline

branch, all scans for a subject are transformed into the space
of the subject’s scan at time point T1.

C. Quantifying the Pairwise Registration Discrepancy

For each subject, we use both sets of pairwise rigid
transformations (G(pw−nic) and G(pw−ic)) to compute the
total mean discrepancy η: for G(pw−nic), we denote the
total mean discrepancy η(pw−nic), and for G(pw−ic), we
denote it as η(pw−ic). As can be seen in Fig. 2, the average
values of η(pw−nic) and η(pw−ic) across all subjects are:
0.51 mm and 0.43 mm, respectively. In six of the 20 subjects,
both η(pw−nic) and η(pw−ic) exceed 0.5 mm, and in two
of the subjects, both discrepancies exceed 1 mm. Given the
nontrivial size of these discrepancies and the fact that they
can be eliminated entirely through transitive registration, it
will be useful to investigate the extent to which quantitative
indices such as FA, MD, and QA differ when transitive
registration versus nontransitive registration is performed in
the processing pipeline.

To investigate whether it is possible that registration dis-
crepancies can be influenced by the presence or absence
of RHIs, we can compare discrepancies in athletes versus
controls. Median η(pw−nic) values for athletes (n1 = 16)
and controls (n2 = 4) are 0.330 and 0.714, respectively, and
median η(pw−ic) values for athletes and controls are 0.326
and 0.490, respectively. We cannot reject the null hypotheses
that the distributions of η(pw−nic) values are different in the
two groups (Mann-Whitney U = 25.0, p = 0.27) and that
the distributions of η(pw−ic) values are different in the two
groups (Mann-Whitney U = 27.0, p = 0.33). In each case,
we have p > 0.05, suggesting that there is not evidence to
claim that the distributions of discrepancies differ in athletes
and controls.

Fig. 2. Total mean discrepancy of pairwise rigid registration for each
subject. Results show that total mean discrepancies of both inverse consistent
(blue) and non-inverse consistent (orange) pairwise registration exceed
0.5mm in six of the 20 subjects.

D. Local Diffusion Metrics

In the original studies using the data from these subjects
[4], [5], [6], diffusion tensors were reconstructed from the
corrected DWI scans, and diffusion metrics including FA
and MD were computed from the tensors. In this paper, in
order to investigate the local impact of discrepancies due
to the non-transitivity of pairwise registration, we use DSI
Studio [1] to perform a subsequent alignment step to register
all of the longitudinal scans of each subject to the MNI
template [36] prior to reconstructing diffusion tensors. Then,
we extract FA and MD values from 48 anatomically relevant
areas defined by the JHU DTI-based white matter atlas [37],
[38]. DSI Studio enables this subsequent registration step
in their implementation of QSDR reconstruction method
[29], which reconstructs spin distribution functions (SDFs) as
opposed to diffusion tensors. Hence, in addition to extracting
FA and MD from diffusion tensors that are reconstructed in
MNI space, we also extract QA values from the SDFs that
are reconstructed via QSDR.

We use this procedure to extract FA, MD, and QA
twice: a first time assuming that the longitudinal scans for
each subject have been rigidly registered according to an
inverse-consistent pairwise registration (yielding FA(pw−ic),
MD(pw−ic), and QA(pw−ic)), and a second time assuming
that the longitudinal scans have been rigidly registered ac-
cording to a transitive inverse-consistent registration (yield-
ing FA(tr−ic), MD(tr−ic), and QA(tr−ic)). For simplicity, we
do not consider the case of pairwise non-inverse consistent
registration of the longitudinal scans.

E. Impact of Pairwise Registration Discrepancies on FA,
MD, and QA

For a particular diffusion metric (FA, MD, or QA), we
denote the value of that metric at location x in scan i
of subject j to be αi,j(x). In each of the 48 regions

3909



Fig. 3. Each subplot illustrates absolute differences in the mean values of the diffusion metric (FA, MD, QA) in specific regions, relative to the maximum
possible value of the diffusion metric, arising from carrying out transitive longitudinal registration versus pairwise registration. Bars for each subject indicate
the three largest differences out of the 48 regions in the JHU atlas.

defined by the JHU atlas, we compute the mean of the αi,j

values, yielding a set of sample means: µi,j,1, µi,j,2, . . . ,
µi,j,48. We then compute the absolute differences between
the sample means, relative to the maximum possible value
of the diffusion metric; i.e.,

ρi,j,k =

∣∣∣µ(tr−ic)

i,j,k − µ(pw−ic)

i,j,k

∣∣∣
νi,j

· 100% , (6)

for k = 1, . . . , 48, and where the normalization factor is
νi,j = 1 for FA and QA and νi,j = maxx α

(pw−ic)
i,j (x) for

MD.
When averaged across all regions and all subjects, the

absolute differences in FA, MD, and QA are 0.37%, 0.30%,
and 0.57% of the maximum possible values, respectively,
for T2 scans, and 0.32%, 0.20%, and 0.51% for T3 scans.
Even though these average differences across all regions
and subjects are fairly small, specific regions of particular
subjects can exhibit substantially larger differences. Each
subplot of Fig. 3 displays, for a particular diffusion metric
and a particular time point (T2 or T3), the three regions for
each subject (the three values of k) for which the values of
ρi,j,k are largest. Note that since both pairwise registration
and transitive longitudinal registration are performed with
the scan at time T1 as the reference scan, all values of ρi,j,k
are identically zero for the time T1 scans.

As can be seen from Fig. 3, for FA, MD, and QA, respec-
tively, 6, 6, and 4 of the 20 subjects contain at least one brain
region in at least one of the time points in which transitive
versus non-transitive longitudinal registration yields absolute
differences exceeding 2% relative to the maximum value
of the diffusion metric. Further, subjects 20 and 25 contain
regions where absolute differences in at-least one of the FA,

MD and QA measures exceed 4% relative to the respective
maximum values.

In the context of studying whether/how diffusion metrics
change in athletes subjected to RHIs over the course of a
football season, the use of standard pairwise rigid registration
for a sequence of longitudinal scans may be suitable for
studying global changes in these metrics due to relatively
low average values of ρ. However, care should be taken
when studying local/regional changes in diffusion metrics
over time, given that the nontransitive nature of pairwise
rigid registration can cause 2% − 4% differences (or more)
in some regions of particular subjects versus the values of the
metrics that would be found in those regions when transitive
longitudinal registration is performed.

VI. CONCLUSION

In this paper, we noted that standard pairwise rigid regis-
tration algorithms that are often used in assessing longitudi-
nal changes in diffusion weighted MR brain images are non-
transitive, leading to a registration discrepancy that can be
eliminated by performing transitive rigid longitudinal regis-
tration. We subsequently proposed an algorithm for carrying
out transitive rigid longitudinal registration. In the context
of college athletes subjected to repetitive subconcussive head
impacts over the course of a football season, we showed that
the average registration discrepancy that arises from standard
processing pipelines can exceed 1 mm in many subjects.
Furthermore, we show that this discrepancy leads to local
/ regional differences in diffusion metrics such as FA, MD,
and QA, that can exceed 2% (and up to 4% or more) of their
maximum possible values.

Based on these results, we recommend that studies of lon-
gitudinal changes in diffusion weighted MR images employ
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transitive rigid longitudinal registration as opposed to pair-
wise rigid registration, especially when studies focus on local
/ regional changes. This guarantees that any discrepancy due
to non-transitivity of the registration algorithm is eliminated,
allowing greater confidence in assessing changes in diffusion
metrics over time.
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