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Abstract— Prior work demonstrated the potential of using
the Linear Predictive Coding (LPC) filter to approximate
muscle stiffness and damping from computer mouse movements
to predict acute stress levels of users. Theoretically, muscle
stiffness and damping in the arm can be estimated using a
mass-spring-damper (MSD) biomechanical model. However,
the damping frequency (i.e., stiffness) and damping ratio
values derived using LPC were not yet compared with those
from a theoretical MSD model. This work demonstrates
that the damping frequency and damping ratio from LPC
are significantly correlated with those from an MSD model,
thus confirming the validity of using LPC to infer muscle
stiffness and damping. We also compare the stress level
binary classification performance using the values from LPC
and MSD with each other and with neural network-based
baselines. We found comparable performance across all
conditions demonstrating LPC and MSD model-based stress
prediction efficacy, especially for longer mouse trajectories.

Clinical relevance— This work demonstrates the validity of
the LPC filter to approximate muscle stiffness and damping
and predict acute stress from computer mouse movements.

I. INTRODUCTION

Stress is an instrumental factor for the emotional, cog-
nitive, and physical well-being of people. A large corpus
of research has demonstrated strong links between stress
and a wide range of chronic health risks such as cardio-
vascular disease [1], diabetes [2], hypertension [2], obesity
[2], and coronary artery disease [3]. Physiological reactions
induced by stress are symptomatic of mental illnesses such
as anxiety disorder and depression, which are a leading
cause of suicides [4]. Chronic stress can also lead to mood
swings, social isolation, and even reduction in academic
achievements among adolescents [5].

Re-purposing data from everyday use human-machine
interfaces have been proposed to continuously monitor and
detect acute stress levels of individuals [6], [7]. While there
are a plethora of data streaming into our smart devices
that could be useful for stress prediction, movement data
is of particular interest due to its privacy-preserving nature
compared to other types of data such as app usage, messages,
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Fig. 1. Open-loop feedforward model for rapid goal-directed arm move-
ment.

and location. Sun et al. demonstrated in the MouStress paper,
the effectiveness of using computer mouse motion data to
measure acute stress where the damping frequency (square
of which is proportional to stiffness) values obtained from
a linear predictive coding (LPC) filter, were larger under a
stressed condition than a calm condition [6]. The steering
wheel of a car simulator has also been successfully shown to
detect acute stress, with data from only a few turns [7]. How-
ever, the parameters obtained from the LPC filter, in prior
studies [6],[7], were not yet compared with corresponding
parameters obtained from a theoretical mass-spring-damper
(MSD) biomechanical model of the arms. This study aims
to bridge that gap to help progress toward continuous stress
monitoring using everyday mouse movement data.

II. BIOMECHANICAL MODEL OF THE ARM

A. Mass-Spring-Damper (MSD) Model

In the context of computer mouse interactions, what pre-
cedes clicking is a rapid, goal-directed skilled movement.
This skilled movement is primarily open-loop in nature and
is influenced by feedforward use of sensory information
obtained in previous computer mouse movements and ex-
perience [9]–[13]. The dynamic behavior during any routine
skilled movement is influenced by passive joint properties,
initial motor commands, sensory feedback, mechanical con-
straints, and mechanics of the neuromuscular system, aka,
biomechanics [14]. Research in biomechanics has shown
that a rapid goal-directed movement can be modeled as a
step response of a linear second-order system, i.e., a classic
mass-spring-damper system [9]–[13]. Typically, smoothed
raw movement data is fit to a simple open-loop feedforward
model [12], [13].

Fig. 1 shows the model describing the relationship between
the target (Xt ) and the actual (Xa) computer mouse position
in the horizontal direction. The open-loop transfer function
between Xt and Xa is given by Eq. 1 as:

Xa(s)
Xt(s)

=
K f

Js2 +Bs+K
(1)

where, K f represents the feedforward gain, J represents the
moment of inertia of the arm, B is the viscous damping
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coefficient of the damper, and K is the stiffness of the spring.
Eq. 1 can also be represented as:

Xa(s)
Xt(s)

=
Kpω2

s2 +2ωζ s+ω2 (2)

where, Kp is the static gain, ω is the damping frequency, and
ζ is the damping ratio. Parameters (Kp, ω , ζ ) were estimated
using an iterative time-domain identification technique called
prediction-error minimization (“pem” from the System Iden-
tification Toolbox of MATLAB 2020b [Mathworks, Natick,
MA]) that minimizes the cost function defined as the sum
of squares of the difference between the actual and the
simulated output. Normalized root mean square error was
used to estimate the goodness of fit (GOF) of the model and
is expressed as:

100×
(

1− ||Xa−Xs||
||Xa−mean(Xa)||

)
(3)

where, Xs is the simulated step response from the model.

B. Linear Predictive Coding (LPC) Filtering Technique

Linear predictive coding is a finite impulse response (FIR)
filtering technique (Eq. 4) that builds a predictive model
of future samples based only on linear combinations of
observed signals from the past [15]. LPC model assumes an
all-pole filter that can approximate systems where poles are
dominating signal characteristics. It turns out that an ideal
second-order system, such as the MSD system described
earlier, which is an all-pole system in the Laplace domain, is
similar in structure to that of a simple LPC model. That is,
if we build an LPC model that best fits a series of samples,
we can recover an approximation to the MSD parameters.

H(z) =
1

A(z)
, A(z) =

E(z)
X(z)

= 1−
p

∑
k=1

akz−k (4)

where H(z) is the system response, ak are the LPC coeffi-
cients, E(z) is the system approximation error, p is the order
of the approximation.

In our previous two studies [6] and [7], we used an LPC
filter of order 4 that generates a sequence of 4 coefficients.
Then, we constructed a 4th order polynomial from the 4
coefficients and considered the complex roots of it (that
will exist in the case of an under-damped system). Then we
estimated, the damping frequency (ω) as the imaginary part
of the complex root (ω = |I(r)|) , and the damping ratio (ζ )
as the ratio of the complex root’s real part and its absolute
value (ζ = |R(r)|

||r|| ). We claimed that the equation of complex
roots is similar to the characteristic polynomial of the 2nd
order MSD system. Thus ω and ζ obtained from each of
the two approaches (LPC and MSD) should be correlated.
The primary aim of this study is to provide evidence towards
that claim by showing the correlation between the parameters
from the two approaches. It is important to note that the LPC
approach is substantially simpler and lends itself to efficient
real-time hardware and software implementations.

Fig. 2. An example of raw data compared with the responses from MSD
and LPC.

III. METHODOLOGY

Using the dataset from the MouStress study [6], we com-
puted the damping frequency, ω , and damping ratio, ζ , using
the MSD model and LPC filter. Fig. 2 shows an example of
the resulting responses from MSD and LPC compared with
the raw signal. Then, we computed the correlation between
the ω and ζ from both methods after removing outliers and
compared the classification performance when using LPC
and MSD-based ω and ζ , either as individual parameters or
in combination.

A. Dataset

We used the data from the point-and-click task during
the MouStress study [6], as clicking is the most frequent
computer mouse event [8]. As the MSD model assumes rapid
goal-directed movement, we primarily leverage the mouse
movement data before the click to compute the ω and ζ

using MSD and LPC. As described in the MouStress paper
[6] and shown in Fig. 3, the objective of the user was to move
horizontally and click the two targets in succession (first,
green on the left, and then, blue on the right) as quickly and
accurately as possible. Since the primary movement direction
was horizontal. we only looked at the x-axis movement
data. Two task parameters, distance D (64px, 128px, 256px,
512px, 1024px) and width W (8px, 16px, 32px, 64px), were
varied. Each of the N = 49 participants (26 female and 23
male, mean age = 20) performed 5 repetitions of the task
with the same configuration under both stressed and calm
conditions. The stressed conditions were elicited through 5
minutes of recursive mental math calculations. More details
of the experimental design can be found in the MouStress
paper [6].

B. Correlation Analysis

To find correlations between the ω’s and ζ ’s obtained
from each of the MSD and LPC approaches, we conducted
Spearman’s rank correlations for different thresholds of GOF
ranging from 0% to 95%.
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Fig. 3. Point-and-click task from MouStress [6]. a) Participants have to
reach the green region and b) click it, which is then dimmed to provide
feedback.

C. Binary Stress Classification

We compared performance using eight different machine
learning (ML) models. Six models were based on a standard
ML technique, called the support vector machines (SVMs),
and included models built with either individual parameters
(ω or ζ ), or combination of parameters (ω and ζ ), derived
from each of the MSD and LPC approaches. We also de-
ployed two neural network-based ML methods, specifically
Long Short-Term Memory (LSTM) and Convolutional Neu-
ral Network (CNN), using smoothed raw computer mouse
movement data. Our goal was to compare the performance
(in terms of accuracy) from MSD and LPC-based methods
with neural network baselines, which do not leverage any
domain knowledge or processing. To minimize the effects
of inter-subject differences and the distance of point-and-
click tasks on the performance of the tasks, we decided to
build a different classifier per participant per distance of the
point-and-click task. This led to each classifier having 40
data samples (20 trials for stressed condition and 20 trials for
calm). Based on the data, we did not see significant influence
of the width and thus did not take that into consideration.
SVM was chosen as some of our initial analyses comparing
different standard ML classifiers like SVM, Decision Tree
etc., with part of the data, consistently showed that SVM
outperformed other standard ML classifiers.

For each trial, the dataset consisted of the x-position
of the computer mouse obtained at a fixed frequency (2
kHz). As a result, input to the LSTM and CNN classifiers
were time-series, and output was the binary stress condition
(either stressed or calm). Since the same participant in each
trial might have finished the point-and-click task at different
times, the length of the time-series data was variable. Thus,
we first tried to use a baseline LSTM network-based method.
However, the direct application of the LSTM model on the
raw data turned out not to be successful (based on non-
decreasing validation loss). Further investigation of the raw
data revealed that for all trials, the final value of x position of
each time series was generally repeated many times (which
was obvious as the location of the target bar was fixed). As a
result, the last several points in each time-series looked very
similar regardless of the condition. Thus, we let the LSTM
network learn from windowed time-series data with the end
points removed. To implement this, we fixed a cutoff value
(representing the last points of the new time-series) for all
the point-and-click tasks for the same distances. The cutoff

Fig. 4. Architecture of the methods based on A) LSTM and B) CNN. (FC
= fully connected layer, ReLU = rectified linear unit)

values were set to be 100 ms for 64x, 125 ms for 128x, 150
ms for 256x, 350 ms for 512x, and 500 ms for 1024x. To
make a fair comparison, the same cutoff values applied to
inputs of the LSTM model were also applied to that of the
CNN model, which is described below.

Due to the scarcity of our data, the final version of the
LSTM model we used consisted of only one LSTM layer
followed by two fully-connected layers, and its architecture is
shown in Fig. 4A. The LSTM-based model was trained with
Stochastic Gradient Descent Optimizer with cross-entropy
loss as the loss function. The batch size was equal to 4, and
the learning rate was fixed at 0.05. We split our data such that
80% were used for training and validation, and the remaining
20% for evaluation. The model was trained from scratch for
100 epochs, and the model with the best validation accuracy
during training was saved and used to infer the test accuracy.
This process was repeated 10 times for each subject and each
distance.

The final architecture of the CNN model is shown in Fig.
4B. The CNN model was trained exactly like the LSTM
based model as described above with a learning rate of 0.001,
but was trained for 500 epochs. Both the neural-network
models were implemented in Pytorch 1.7.0.

For the standard ML models, the ω and ζ parameters ob-
tained from each of MSD and LPC approaches were fit with
the SVM classifier (either individually or in combination)
with default hyperparameters and min-max normalization.
SVM was imported from the sklearn library. The accuracy
was obtained from averaging accuracies from 5-fold cross-
validation for each iteration. The overall process (extraction
of parameters with either MSD or LPC, fitting SVM, obtain-
ing classification accuracy) described above was repeated 10
times, and the average results across the 10 iterations are
reported. We also compare the classification performance
from the LPC and MSD-based methods using paired t-tests
after confirming normality via Kolmogorov-Smirnov test of
normality.

IV. RESULTS & DISCUSSION

The means and standard errors of ω and ζ from MSD and
LPC under calm and stressed conditions are computed after
removing outliers, where ζ ≤ 0 or ζ > 100, and are shown in
Table I. We see a significant (p < 0.001) increase in ω of the
stressed condition relative to the calm condition. However,
although the ζ from the LPC was significantly higher under
stressed condition, than calm (as previously shown in [6]),
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TABLE I
MEAN (STANDARD ERROR) OF ω AND ζ FROM MSD AND LPC MODELS

UNDER CALM AND STRESSED CONDITIONS

ω

Model calm stressed t(48) p
MSD 12.9 (0.5) 14.4 (0.4) 3.6 < 0.001∗
LPC 0.261 (0.002) 0.268 (0.001) 3.8 < 0.001∗

ζ

Model calm stressed t(48) p
MSD 1.00 (0.03) .97 (0.03) 1.1 0.28
LPC 0.5635 (0.0005) 0.5652 (0.0005) 3.2 0.002∗

Fig. 5. Examples of mouse pointer trajectories from two participants. a)
One with, and b) one without, visually clear boundaries between the stressed
(Red) and calm (Blue) conditions.

the ζ from MSD tended to be lower in stressed condition
than calm (as previously hypothesized in [6]).

Fig. 5 show examples of all the raw mouse motion tra-
jectories from two representative participants under stressed
and calm conditions. Fig. 5A demonstrates computer mouse
trajectories with clear visual distinction between the stressed
and calm conditions. Such trends were noticed visually for 16
of the 49 participants when the distance between the bars was
1024x. Fig. 5B shows a participant’s data where no visually
clear boundary could be drawn between the trajectories
under stressed and calm conditions. 33 participants exhibited
similar behavior.

Fig. 6. A) The correlation coefficients between the ω and ζ from MSD
and LPC for different thresholds of GOF are shown with red and blue lines,
respectively. B) The green line indicates the percentage of the corresponding
data according to different thresholds of GOF.

A. Correlation

Fig. 6A show the correlations between the damping fre-
quencies and damping ratios from MSD and LPC for dif-
ferent thresholds of GOF. All correlations were statistically
significant (p < .001). The correlation coefficient between
the damping frequencies was strong and reached 0.7 with
GOF of 80% and went even higher for data with higher
GOF. These results suggest that the damping frequency, as
obtained from the LPC filter could be a very good proxy
for the damping frequency, as obtained from a theoretical
MSD model. For the damping ratios, we saw moderate
correlations of approximately −0.45, even for data with
GOF of 90%. The negative correlation between the damping
ratios suggests, that the damping ratio from LPC (although
significantly different for stressed and calm conditions in our
task), is not that good a proxy for damping ratio obtained in
a traditional sense from a theoretical MSD model. Further,
as the threshold for GOF reached 80%, we saw a steeper
decline in the percentage of data that met the requirement
as shown in Fig. 6B, where only around 55% of the entire
data met the 80% GOF threshold criteria, typically common
in system modeling studies.
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TABLE II
COMPARISON OF BINARY STRESS CLASSIFICATION’S MEAN ACCURACY

(STANDARD ERRORS), FOR THE DIFFERENT ML MODELS (CHANCE WAS

50%). HIGHEST CLASSIFICATION ACCURACY FOR EACH DISTANCE IS

HIGHLIGHTED IN BLUE.

Distance CNN LSTM MSD LPC MSD LPC MSD LPC
ω,ζ ω,ζ ω ω ζ ζ

64x 51.8% 54.7% 58.8% 53.5% 60.0% 54.6% 51.2% 57.1%
(0.65%) (1.1%) (1.9%) (1.4%) (1.9%) (1.7%) (1.0%) (1.7%)

128x 53.6% 56.4% 56.4% 55.9% 57.1% 58.8% 52.3% 58.9%
(0.95%) (1.5%) (2.0%) (1.8%) (2.0%) (1.9%) (1.0%) (2.0%)

256x 55.1% 58.3% 59.1% 57.2% 59.5% 62.3% 55.0% 60.4%
(1.04%) (1.7%) (2.0%) (1.6%) (2.0%) (1.8%) (1.3%) (1.9%)

512x 60.1% 65.3% 60.0% 58.6% 60.7% 67.2% 54.9% 64.4%
(1.5%) (1.8%) (2.2%) (1.3%) (2.1%) (2.0%) (1.6%) (2.1%)

1024x 62.2% 67.3% 63.6% 61.4% 65.3% 72.9% 56.0% 69.4%
(1.6%) (2.0%) (2.3%) (1.4%) (2.2%) (1.8%) (1.6%) (1.9%)

Overall 56.6% 60.4% 59.6% 57.3% 60.5% 63.2% 53.9% 62.0%
(1.01%) (1.4%) (1.8%) (1.3%) (1.7%) (1.4%) (0.7%) (1.6%)

B. Binary Acute Stress Classification

Table II shows the classification accuracies from the dif-
ferent ML models. The LPC ω-based model had the highest
overall accuracy, followed by LPC ζ -based model, MSD ω-
based model, and LSTM-based model, respectively. Paired
t-tests showed that LPC-based methods had significantly
higher classification accuracies than MSD-based methods
when either using ω (p = .01) or ζ (p < .001). This
result suggests that the LPC-based models can match or
outperform MSD-based models and neural network-based
baseline models for classifying acute binary stress levels.
Specifically, the classifier based on the LPC-based ω yielded
accuracy above 75% for nearly half of the participants (23
of 49) for trials with 1024x distance. The relevance of LPC-
based ω was also demonstrated in prior literature [6],[7] .
In the future, it may be worth exploring whether using only
the data samples above certain GOF (for MSD model) or
below certain error variance (for LPC filter, and something
not considered in this study) improves the accuracies of the
MSD- and LPC- based classifiers, respectively. Further, it
is possible that hyperparameter tuning in SVM would yield
better classification accuracies. For the neural network-based
classifiers, training with larger amount of data may yield
higher classification accuracies.

It is also worth noting the reduction in accuracy observed
with smaller distances between targets. A possible explana-
tion for this reduction is that as the targets are closer together,
there is less interaction from the larger muscles in the arm
versus the hand. As we progress towards in-the-wild studies,
it would be relevant to investigate optimal window lengths
further to apply MSD or LPC-based estimators.

V. CONCLUSION

In this paper, we demonstrate that the parameters (espe-
cially damping frequency, aka stiffness) derived from an LPC
filter are valid and a good proxy (aka strongly correlated)
to those derived from a biomechanical MSD model of the
human arm to predict binary acute stress levels of users
based on their computer mouse movement data. We also
compared stress classification performance using SVM to

that of neural network-based models such as LSTM and
CNN, and found that MSD and LPC-based models produced
higher classification accuracies than LSTM and CNN-based
models. This demonstrates the potential of LPC and MSD
models in predicting the acute stress levels of users from
their computer mouse movement data to enable continuous
stress monitoring. In the future, we plan to explore using a
combination of neural network-based approaches with MSD
or LPC, applying those methods to analyze in-the-wild data,
and combining physiological signals to further improve the
classification performance.
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