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Abstract— Gradient coils are vital for Magnetic Resonance 

Imaging (MRI). Their rapid switching generates eddy currents 

in the surrounding metallic structures of the MRI scanner 

causing undesirable thermal, acoustic, and field distortion 

effects. The use of actively shielded gradient coils does not 

eliminate such undesirable effects totally. Use of passive 

shielding was proposed lately to particularly help in mitigating 

eddy currents and loud acoustic noise. Numerical computations 

are necessary for calculating eddy currents and evaluating the 

efficacy of passive shielding. Harmonic and temporal eddy 

current analysis caused by gradient coil(s) using network 

analysis (NA) can be faster and more flexible than the traditional 

FDTD and FEM methods. NA was used more than a decade ago 

but was limited to analyzing eddy currents resulting from z-

gradient coils of separated turns. NA with stream function was 

recently modified resulting in the more general Multilayer 

Integral Method (MIM) for simulation of eddy currents in thin 

structures of arbitrary geometries. In this work, we compared 

the performance of the NA method and an adapted MIM method 

to analyze eddy current in both the passive shielding and 

cryostat to the Ansys Maxwell 3D analysis thus evaluating the 

performance of gradient configurations with and without 

passive shielding. Both an unconnected and a connected z-

gradient coil configuration were used. Our analysis showed high 

agreement in the profiles of eddy ohmic losses in metallic 

structures using the three methods. The NA method is the most 

computationally efficient however, it is limited to specific 

symmetries unlike the more general MIM and Ansys methods. 

Our implementation of the adapted MIM method showed 

computational efficiency relative to Ansys with comparable 

values. We have developed a computationally efficient eddy 

current analysis framework that can be used to evaluate more 

designs for passive shielding using different configurations of 

MRI gradient coils.  

 

I. INTRODUCTION 

Gradient coils play a significant role in MRI imaging as 
they encode the MRI signal by creating linearly varying 
magnetic fields 𝐵𝑧 along the different axes (x, y, and z). The 
longitudinal gradient coil is traditionally responsible for slice 
selection while the other transverse gradient coils are 
responsible for spatial encoding of the MRI signal. 

The rapid switching of the magnetic field of gradient coils 
induces eddy currents in surrounding structures such as the 
cryostat and other neighboring gradient coils. Reducing eddy 
currents and mitigating their effect is of importance for the 
performance of MRI where the following techniques can be 
used; active and passive shielding of gradient coils [1, 2], pre-
emphasis of gradient pulses [3], slitting gradient coil tracks [4], 
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using less conductive materials for surrounding structures [5], 
pulse sequence programming [6], vacuum champers [5] … etc.  

Analysis of generated eddy currents is important for 
gradient coil designs. Several methods have been used to 
calculate and analyze eddy currents including FDTD, FEM, 
and NA method [2, 7-10]. Network analysis is generally a fast 
and effective numerical method where eddy currents are 
calculated using coupling and resistive mechanism in 
conducting structures (divided into multi-layer rings) only and 
do not involve discretization of the whole domain as required 
in FDTD and FEM. The NA method developed in [2] used the 
symmetry for the unconnected z-gradient coil to compute eddy 
currents where the problem was formulated as first-order 
differential equations or the so-called circuit equations. The 
studies in [2, 9, 10] used NA to analyze the eddy currents 
resulting from an unconnected z-gradient coil on the cryostat 
where the cryostat is discretized into coaxial rings, and the 
resistances, as well as inductances, were calculated using 
closed-form equations [2, 9-11]. In that situation, eddy 
currents were predicted to flow uniformly in circular rings 
varying along the azimuthal direction where no current was 
assumed to flow in the longitudinal direction. However, those 
studies are limited and cannot solve the eddy current problem 
for connected z-gradient coil or other transverse gradient coils 
where resulting eddy currents in such cases are not limited to 
a circular path. Also, there is another limitation for computing 
eddy currents in non-homogeneous metallic structures.  

The MIM [12] is a more general approach that is also based 
on network analysis and stream functions. The cryostat is 
divided into multi-layers of meshed triangular elements. The 
current density is assumed to be uniform in the cross-section 
of each triangle element, and no current flows between the 
different layers. The eddy current problem is also represented 
by a first-order equation to solve stream function values [13, 
14] at the nodes of the triangular elements. The source coil 
could be assumed as a thin-wire or a wire with finite track 
width. 

In this paper, we develop an efficient computational 
framework for MRI eddy current analysis using both the NA 
and adapted MIM methods. We compare computational values 
of eddy currents and efficiencies against a reference FEM 
method while evaluating the efficacy for two passive shielding 
configurations (capped and uncapped) involving a 
longitudinal MRI gradient coil. With careful implementation, 
this comparative study shows that the three methods can 
achieve comparable values for eddy ohmic losses albeit at 
different computational speeds and modeling limitations.    
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II. METHODS AND NUMERICAL SIMULATIONS 

A. Network Analysis (NA) 

For axisymmetric problems such as z-gradient and 
cylindrical metallic structures, the conductors such as cryostat 
and passive shield are sliced into  𝑛  concentric rings of finite 
width 𝑤 and thickness 𝑡 smaller than the skin depth (𝛿) which 
can be calculated as given: 

𝛿 = √
1

𝜋𝜇𝑓
 (1) 

Where  𝜇 is the permeability of the conductor and 𝑓 is the 
frequency of the excitation current. The resistance, self-
inductance, and mutual inductance between the rings are 
calculated as suggested in [2, 9-11] and they are used to 
calculate the eddy current 𝒊  in the following circuit equation:  
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Where M is the inductance matrix containing the self-
inductances of the rings and the mutual inductances between 
the rings, R is the resistance matrix contains the resistance of 
the rings, 𝑛 is the number of the rings, 𝑴𝟎 is the mutual 
inductance between the rings and the source coil, and  𝑠(𝑡)  is 
the current source. A single frequency of sinusoidal current is 
used in harmonics eddy current analysis while a pulse of a 
trapezoidal form is used for transient analysis. 

For harmonic analysis, the eddy currents vector is given as: 

𝒊 = −𝑗 𝜔 𝑖0 (𝑗 𝜔 𝑴 + 𝑹)−𝟏 𝑴𝟎  

Where 𝑖0 is the amplitude of the sinusoidal current source, 𝜔 
is the angular frequency (2𝜋𝑓), and 𝑗 is the imaginary unit. For 
simplicity, the impedance matrix 𝒁  can be written as: 

Z =  𝑗 𝜔 𝑴 + 𝑹 (3) 

And the harmonic eddy current solution is: 

                           𝒊 = −𝑗 𝜔 𝑖0 𝒁−𝟏 𝑴𝟎 (4) 

B. Multilayer Integral Method (MIM) 

In this method, the metal structures are divided into 
multiple layers with thickness less than the skin depth (𝛿) and 
the surface of each layer is meshed into triangular elements. 
Each triangle node is locally numbered clockwise or 
counterclockwise from 1 to 3 [13, 14].  

The current density 𝐽 flowing through the surface are 
represented by stream function Φ as: 

𝐽 = 𝛻 𝑥(𝛷. 𝑛̂) 
(5) 

Where 𝑛̂  is the normal vector to the surface. The current 𝐽𝑒⃗⃗⃗ ⃗ 
that flows inside a triangle element depends on the stream 
function values at the nodes and can be given as: 

               𝐽𝑒⃗⃗⃗ ⃗ = 𝑒1⃗⃗⃗⃗  𝜙1 + 𝑒2⃗⃗ ⃗⃗  𝜙2 + 𝑒3⃗⃗ ⃗⃗ 𝜙3 (6) 

Where 𝑒1⃗⃗⃗⃗ , 𝑒2⃗⃗ ⃗⃗ , 𝑒3⃗⃗ ⃗⃗  the vector facing the triangle nodes (1, 2, and 
3) divided by the double area of the triangle, and 𝜙1, 𝜙2, 𝜙3  
are the stream function values at the triangle nodes.  
The source coil can be considered as a thin wire coil, carrying 
a time-varying current 𝑠(𝑡). The coil is discretized into 𝐿 
segments and the vector of each segment 𝑙𝑘  is given as: 

                 𝑙𝑘⃗⃗⃗ ⃗ =  𝑙 𝑥 𝑥̂  +   𝑙 𝑦 𝑦̂   +  𝑙 𝑧 𝑧̂ (7) 

Where 𝑙𝑥 , 𝑙𝑦, and  𝑙𝑧 are the segment vector components in the 

directions of x, y, and z respectively. 
The circuit equation is derived from the total 

electromagnetic energy [12, 13] and can be expressed in the 
frequency domain as: 

(𝑹𝒏𝒎 + 𝑗𝜔𝑴𝒏𝒎)𝜱 = −𝑗𝜔 𝑖0 𝑴𝒏𝟎  (8) 

Where 𝜱  is a vector containing the stream function values of 
all nodes of conducting structures, 𝑴𝒏𝟎 is a vector containing 
the mutual inductance between the nodes 𝑛 of the meshed 
metallic structures and the segments of the source coil, 𝑹𝒏𝒎 is 
the resistance matrix and 𝑴𝒏𝒎 is the inductance matrix due to 
the interaction of any arbitrary nodes 𝑛 and 𝑚, 𝜔 is the angular 
frequency and  𝑖0 is the amplitude of the sinusoidal current 
passing through the coil. The impedance matrix 𝒁𝒏𝒎 can be 
written as: 

𝒁𝒏𝒎 = 𝑹𝒏𝒎 
+ 𝑗𝜔𝑴𝒏𝒎 (9) 

The harmonic solution of stream function can be expressed 
similar to equation (4) as: 

𝜱 = −𝑗𝜔 𝑖0 𝒁𝒏𝒎
−𝟏  𝑴𝒏𝟎 (10) 

Assuming the surface is meshed into a single layer, the 
nodes 𝑛 and 𝑚  are shared among triangles 𝑁 and 𝑀 
respectively, thus the resistance (𝑅𝑛𝑚) and inductance 
(𝑀𝑛𝑚) elements can be expressed as: 

𝑅𝑛𝑚 =
1

𝜎𝑡
∑∑ ∫ 𝑒𝑛𝑁 .  𝑒𝑚𝑀

𝑠

  

𝑀𝑁

 𝑑𝑠 (11) 

         𝑀𝑛𝑚 =
𝜇0

4𝜋
∑∑ ∫ ∫

𝑒𝑛𝑁 .  𝑒𝑚𝑀

|𝑟𝑀 − 𝑟𝑁|
𝑠

 𝑑𝑠 𝑑𝑠′ 

𝑠′𝑀𝑁

 (12) 

Where 𝜇0 is the vacuum permeability which equals 4π ×
10−7 H.m−1, 𝜎 is the conductivity of the material, 𝑡 is the 
thickness of the triangle, 𝑒𝑛𝑁 is the vector facing the node 𝑛  
(which is part of the triangles 𝑁) divided by the triangle’s 
area, 𝑒𝑚𝑀 is the vector facing the node m  (which is part of the 
triangles 𝑀) divided by the triangle’s area, 𝑑𝑠 and 𝑑𝑠′ are the 
surface area element of the triangles in 𝑁 and 𝑀 respectively. 
Notice that equation (11) is valid only for the nodes 𝑛 and 𝑚  
that share the same triangle(s), otherwise  𝑅𝑛𝑚= 0.  |𝑟𝑁 − 𝑟𝑀| 
is the distance between the triangles in 𝑁 and 𝑀.  Simply, the 
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distance could be the central difference between the two 
centroids of the triangles in 𝑁 and 𝑀; however, for better 
accuracy and to avoid singularities as well as not to reduce 
computational efficiency we used a 3-points distance 
calculation. 

The mutual inductance elements 𝑀𝑛0 between the coil’s 
segments and the node 𝑛  on the metallic structures are 
calculated as follows: 

𝑀𝑛0 =
𝜇0 

4𝜋
 ∑ ∑∫

 𝑙k .  e⃗⃗𝑛𝑁

|𝑟𝑁  − 𝑟𝑘|
 𝑑𝑠

𝑠𝑁

𝐿

𝑘=1

 (13) 

Where 𝑙𝑘  is the vector of the coil segment 𝑘, 𝐿 is the number 
of segments on the coil, |𝑟𝑁  − 𝑟𝑘| is the distance between the 
center of the coil segments and the triangles 𝑁 who share node 
𝑛. To ensure no current crosses the boundaries of metallic 
structures, the stream function at the boundary nodes of each 
metallic structure should be equal to the same value which is 
unknown and needs to be determined. For each separate 
boundary, a different stream function value should be 
considered (it can take a value of zero at one of the 
boundaries).  The circuit equations are thus modified 
accordingly to satisfy the boundary conditions where the 
dimension of the vector  𝚽  is reduced to only contain 
independent stream function variables using a transformation 
matrix as suggested in [13]. 

C. The simulations 

The same dimension of the actively shielded z-gradient 
coil used in [1] is modeled here as a thin wire and is used to 
induce eddy currents on the cryostat. The same capped and 
uncapped passive shielding dimensions as [1, 2] were also 
used. The coil’s driving current is assumed to be 100A at a 
frequency of 1kHz. The z-gradient coil had a primary coil 
radius of 330mm and a secondary coil radius of 420 mm. Fig.1 
shows a 3D plot of the cryostat with the capped-passive shield 
including the z-gradient coil. The cryostat is a cylinder with a 
diameter of 903 mm, a height of 1700 mm, and has a thickness 
of 3.18 mm (less than the skin depth at 1KHz). The cryostat 
material is stainless-steel with a resistivity of  
96 𝑥 10−8 Ω . m. The passive shield is a copper cylinder of 

884mm diameter, 1600mm height, and thickness of 1mm (less 
than the skin depth at 1KHz). The cap of the passive shield has 
a hole with radius 322 mm and a thickness of 1 mm. The 
resistivity used for copper is  1.7 𝑥 10−8 Ω m. 

 

We implemented the network analysis method [2] and 
adapted the MIM method [12] using Matlab (MathWorks, 
MA).  In the network analysis computations, the cryostat, 
passive shield, and cap are sliced into rings with width of 20 
mm. For the adapted MIM computations, the metallic 
structures, including cryostat and passive-shield were meshed 
into structured triangular elements with a maximum edge 
length of 20 mm. We also implemented the meshing using 
Matlab. The driving coils of the z-gradient were segmented 
with a maximum segment length of 20 mm. To increase the 
speed of the simulations, nested loops were avoided as much 
as possible using operations vectorization. To validate our 

 
 
 
 

 
(a) 

 
 
 
 
 

 
(b) 

 
 
 
 
 

 
(c) 

 
Fig.2: Eddy current harmonic analysis at 1KHz for an unconnected z-gradient 
coil (circular symmetry is assumed) using the three computational methods. 
The graph represents the eddy current density profile along the z-direction in 
the cryostat for the case of: (a) no passive-shielding. (b) non-capped solid 
passive-shield. (c) capped solid passive-shield.  

 
Fig.1: A 3D plot for the complete model including the self-shielded z-
gradient coil and the metallic structures (the capped passive shield and 

scanner’s cryostat) which are meshed into triangular elements for MIM.  
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results, the same coil and metallic structures were modeled 
using Ansys Maxwell 3D (Ansys, Inc., PA). All computations 
were performed on an Intel (R) Core(TM) i7 (6th generation) 
CPU (2.60 GHz)  laptop with 16 GB  RAM.  

   
Fig.3: A 3D plot of eddy current ohmic losses for the unconnected (left) and 
connected z-gradient coils (right) with no passive shielding using the adapted 

MIM computations. Circular symmetry for the computations is apparent for 

the unconnected gradient coil.  
 
 

Table I: TOTAL POWER DISSIPATION (PD) IN THE CRYOSTAT AND THE 

SIMULATION TIME. 

Z-gradient  Passive-Shield  
NA 

(PD/Time) 

MIM 

(PD/Time) 

ANS 

(PD/Time) 

Separated Absent 
37.31dBm/ 

0.43s 

37.28dBm/ 

8.04min 

37.23dBm/ 

4.5h 

Connected Absent 
* 38.32dBm/ 

8.04min 

38.76dBm/ 

6h 

Separated Uncapped 
23.60dBm/ 

1.33s 

23.67dBm/ 

41.16min 

23.51dBm/ 

5.1h 

Connected Uncapped  
* 23.91dBm/ 

43.98min  

23.76dBm/ 

6.85h 

Separated Capped  
14.69dBm/ 

1.52s 

14.97dBm/ 

51.54min 

15.00dBm/ 

5.75h 

Connected Capped  
* 16.52dBm/ 

53.34min 

16.53dBm/ 

6.9h 

*The Eddy current cannot be calculated by NA method due lack of circular symmetry. 

III. RESULTS AND DISCUSSION 

The eddy current density 𝐴/𝑚2, ohmic loss  𝑊/𝑚3, and 
total power dissipation in dBm were calculated in the cryostat 
and the passive shield. In case of no passive shielding, Fig.2 
shows a comparison of the eddy current density profiles 
induced by an unconnected, actively shielded z-gradient coil 
in the cryostat along the z-direction using the three 
computational methods for the unshielded cases (a), uncapped 
passive shielding (b) and capped passive shielding (c).   

Both the unconnected and connected, actively shielded, z-
gradient coil models were simulated at 1KHz using the 
adapted MIM method. Fig.3 shows the resultant eddy current 
ohmic losses in the cryostat demonstrating the lack of circular 
symmetry for the connected model. Lack of symmetry for the 
more realistic, connected z-gradient model makes the 
simulation using the NA method [2, 9, 10] inapplicable thus 
eddy current power losses are only calculated using the 
adapted MIM method and Ansys in this case. Table I shows a 
comparison of three techniques in terms of the calculated eddy 
power losses in the cryostat and the speed of computations for 
the various configurations that were computed. 

IV. CONCLUSION 

The computed eddy current results using both the NA and 
adapted MIM methods for the modeled configurations closely 
agreed with Ansys computations albeit at a higher 
computational efficiency. As previously stated, our results 
confirm that the NA method is highly computational efficient, 
however, it can only be applied to certain configurations of 
circular symmetries. We adapted here the MIM method as a 
more general solution while achieving good computational 
efficiency. We employed here efficient meshing as well as 3-
points distance calculations for calculating the elements of the 
inductance matrix to achieve acceptable accuracies as well as 
to reduce the computational load. To increase the speed of the 
simulations, nested loops were avoided as much as possible 
using operations vectorization. Our efficient computational 
framework will allow us to perform both harmonic and 
transient eddy current analysis for more complex/realistic 
gradient configurations/situations including transverse 
gradients where we can evaluate other passive shielding 
designs as well. 
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