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Abstract—Patients with initially uncomplicated type-
B aortic dissection (uTBAD) remain at high risk for
developing late complications. Identification of morphologic
features for improving risk stratification of these patients
requires automated segmentation of computed tomography
angiography (CTA) images. We developed three segmentation
models utilizing a 3D residual U-Net for segmentation of
the true lumen (TL), false lumen (FL), and false lumen
thrombosis (FLT). Model 1 segments all labels at once,
whereas model 2 segments them sequentially. Best results for
TL and FL segmentation were achieved by model 2, with
median (interquartiles) Dice similarity coefficients (DSC) of
0.85 (0.77-0.88) and 0.84 (0.82-0.87), respectively. For FLT
segmentation, model 1 was superior to model 2, with median
(interquartiles) DSCs of 0.63 (0.40-0.78). To purely test the
performance of the network to segment FLT, a third model
segmented FLT starting from the manually segmented FL,
resulting in median (interquartiles) DSCs of 0.99 (0.98-0.99)
and 0.85 (0.73-0.94) for patent FL and FLT, respectively.
While the ambiguous appearance of FLT on imaging remains
a significant limitation for accurate segmentation, our pipeline
has the potential to help in segmentation of aortic lumina and
thrombosis in uTBAD patients.

Clinical relevance— Most predictors of aortic dissection (AD)
degeneration are identified through anatomical modeling, which
is currently prohibitive in clinical settings due to the time-
intense human interaction. False lumen thrombosis, which often
develops in patients with type B AD, has proven to show
significant prognostic value for predicting late adverse events.
Our automated segmentation algorithm offers the potential of
personalized treatment for AD patients, leading to an increase
in long-term survival.
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I. INTRODUCTION

Medical management of initially uncomplicated type-B
aortic dissection (uTBAD) is associated with a poor long-
term survival of only 60% at five years, due to a high
rate of late adverse events (LAEs) [1]. Early identification
of patients who may potentially benefit from preventative
thoracic endovascular aortic repair (TEVAR) is thus highly
desirable. Several studies suggest that morphological features
extracted from computed tomography angiography (CTA)
might predict LAEs in patients with uTBAD [2], [3]. False
lumen thrombosis (FLT) also plays an important role, al-
though its developing mechanism is incompletely under-
stood [3]. Automated and robust segmentation of the true
lumen (TL) and false lumen (FL) — the defining features
of aortic dissection — is a prerequisite for extracting and
exploring the predictive power of any other morphologic
feature, including the presence and extent of false lumen
thrombosis (FLT). Manual segmentation of TL, FL, and
FLT is difficult, poorly reproducible, and prohibitively time
consuming to be considered for clinical application.

Machine learning techniques may overcome these limita-
tions. Hahn et al. proposed a 2D network for segmenting the
TL and FL [4]. Although this work reported good results, it
is reasonable to expect that the addition of a third dimension
is an important requisite for FLT segmentation, since it is
hard to differentiate between thrombus and slow blood flow
without evaluating adjacent slices. Cao et al. applied a 3D
multi-task framework to segment the TL and FL, by taking an
entire scan volume as input, with considerable downsampling
in the z-dimension [5]. Downsampling overcomes limitations
in memory and computational capability, but quality loss and
image deterioration occur in both the CT and ground truth
data [5], [6]. The recent publication of Chen et al. proves that
better results are achievable without downsampling, which
opens up the possibility of accurate FLT segmentation [7].
However, no attempts at automatic segmentation of FLT have
been made [6].

The first aim of this work was to develop an automated
pipeline to segment the TL and FL, without forcing the input
to be downsampled in the z-direction. The second aim was
to also segment the FLT.
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II. METHODS
A. Patients and imaging data

We retrospectively identified 164 CTA scans from 43 pa-
tients with uTBAD who underwent baseline and surveillance
imaging at our institution between 2003 and 2017. After
excluding incomplete or technically inadequate CT scans
from 6 patients, our final study dataset consisted of 147 scans
from 40 patients (13 women), with a median (interquartiles)
age of 48 (36-59) years. FLT was present in 93/147 scans
from 27/40 patients.

B. Ground-truth segmentation

All scans were manually segmented by a trained radiolo-
gist (KH, six years of experience) using Intuition software
(TeraRecon, Foster City, CA). Image voxels were labeled
as TL, patent FL. (PFL; non-thrombosed part of the FL),
FLT, and background. In order to establish the suitability
of the manual segmentations as ground truth and to set a
benchmark for network performance, eight scans of the study
population, belonging to six patients, were segmented by a
second observer (MJW, six years of experience). Dice simi-
larity coefficients (DSCs) were calculated to assess similarity
between the segmentations of both observers.

C. Preprocessing

Our segmentation approach uses multiplanar reformation
images (MPRs) centered along and perpendicular to the
aortic centerline, as described by Hahn et al. [4]. MPR
stacks were resampled to obtain an isotropic resolution
of 1 mm, and subsequently cropped in-plane to a size of
80x80 mm. Unity-based normalization was applied to the
voxel intensities of all scans.

We split the dataset into training, validation, and test sets,
with a ratio of 70:15:15, resulting in a number of scans ratio
of 103:22:22, number of patients ratio of 28:6:6, and number
of scans with FLT ratio of 65:14:14, respectively.

Augmentation was performed on 25% of training data.
This value was empirically determined to optimize model
performance. The following transformations were randomly
employed: (1) flipping along the transverse axis, (2) trans-
lation along the transverse and sagittal axis, (3) uniform
scaling, (4) non-uniform scaling, or (5) gamma correction
of density values.

D. Models

We investigate the efficacy of (1) a single-step multi-task
model, (2) a sequential multi-task model and (3) a single-step
single-task model (Fig. 1).

1) Model I: In the first model, a single network classifies
image voxels as TL, FL, and background (for all cases) or
TL, PFL, FLT, and background (for cases containing FLT).

2) Model 2: In the second model, a cascade of networks
performs stepwise segmentation. After the initial segmenta-
tion of the whole aorta, the TL and FL are segmented in a
second step. Then, PFL and FLT were segmented in cases
containing FLT. In the second (and third) step of this cascade,
the prediction of the previous step is used as an additional
input channel.
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Fig. 1: Visualization of the segmentation pipeline. Each
arrow corresponds to a 3D residual U-Net. Model 1 segments
all labels at once, whereas model 2 utilizes a cascade of
networks. Model 3 is a single-step model that starts from
the false lumen ground truth segmentation. CTA = computed
tomography angiography.

3) Model 3: In the third model, the FLT is segmented
directly from the manually segmented FL. This enables us
to independently evaluate the performance of the network to
segment FLT given a high quality FL segmentation.

E. Architecture

All networks used in our three models share the same
architecture, data input details and optimization mechanism.

The networks were built on top of Lee et al.’s residual sym-
metric U-Net, with max-pooling layers in the encoder, strided
transposed convolution layers in the decoder and large-
scale skip-connection between the encoder and decoder[8].
The basic blocks, used in each level, consist of a single
convolution, followed by a residual block consisting of two
convolutions and a residual skip-connection.

The proposed networks take a slab composed of 16
consecutive MPR slices as input, with a batch size of 8.
During training, slabs were randomly selected within the
image volume. During each epoch a different subset of slabs
was selected.

A cosine decay scheme without restarts, was chosen for
the learning rate (LR). The maximum LR value of 10~* was
estimated using the LR range test [9], and used as starting
LR value. We used Adam as optimization algorithm and the
Generalized Dice loss (GDL) as loss function [10].
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Fig. 2: Automated segmentation outcome in one patient with
false lumen thrombosis (FLT). The 3D rendering shows the
ground truth manually segmented aorta, while 2D images are
sampled along the center-line at the proximal, middle, and
distal segments of the FLT.

III. RESULTS
A. Interobserver variability

The median (interquartiles) DSCs between segmentations
performed by the two observers were 0.92 (0.91-0.93) for
the TL, 0.91 (0.88-0.94) for the PFL, and 0.78 (0.74-0.80)
for the FLT label, respectively.

B. Network performance

Table I summarizes the performance of model 1 and
2 for TL and FL segmentation using the entire database.
Both models were also applied to the subset of scans that
contained FLT to segment TL, PFL, and FLT (Table II). This
table also shows the results of the application of model 3 to
the manually segmented FL. mask of the scans with FLT.

Fig. 2 shows the segmentation outcome for a patient with
FLT. The segmented volume distributions in the test set are
shown in Fig. 3.

IV. DISCUSSION

We developed three models for segmentation in CTA-scans
of patients with uTBAD.

The TL and FL were successfully segmented using model
2, which utilizes two sequential residual U-nets, with results
superior to those of model 1, a single-step network. The
superiority of the second model was expected, since the pres-
ence of the aorta segmentation from the first step benefits the
second step. We hereby essentially divide the segmentation
problem into sub problems. It is likely that the additional
input information obtained from the previous segmentation
layer improved network convergence during training.

DSC scores seem comparable to those of Hahn et al,
who used a pre-trained 2-dimensional U-net with a VGG11
encoder and reported mean + standard deviation values of
0.87£0.06 and 0.89 + 0.04 for the TL and FL respectively.
Although this study was based on the same dataset, a fair
comparison of developed models is not possible, due to the
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Fig. 3: Model performance: segmented volumes per model.
PFL = patent false lumen; FLT = false lumen thrombosis.

difference in training, validation and testing data partitions.
While Hahn et al. reported good results, the use of a
3D model is required in the current work, due to small
FLT volumes that make information from adjacent slices
necessary for accurate segmentation. Cao et al., who utilizes
a sequence of 3D U-nets without residual skip-connections,
reports Dice values of 0.93 & 0.01 and 0.91 + 0.02 for
the TL and FL, respectively. Their model, however, forces
the scans to be downsampled in the z-direction [5], which
can result in partial volume artifacts, a method that would
not be feasible for FLT segmentation, due to the small
volumes of thrombi. The recent study of Chen et al. achieves
excellent results without downsampling, but the authors state
that their straightening algorithm might not be suitable for
scans with FLT [7]. For the FLT results, comparison to other
methods is not possible, since no other attempts of automatic
segmentation of FLT in AD patients have been made.

Although the successful segmentation of the TL and FL is
promising, we reported suboptimal results for FLT segmen-
tation with model 1 and 2. After qualitative examination,
we observed that both models performed better on scans
with a larger amount of thrombosis. Notably, the single-step
model performed better than the serial model in the testing
set at segmenting PFL and FLT (Table II). This result may
be caused by the high sensitivity of the last segmentation
step to a suboptimal segmentation of the FL. Our third
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TABLE I: Model performance: Dice similarity coefficients of developed models in the complete dataset. Data are presented

as median and interquartile range.

True lumen

False lumen

0.81 (0.73 - 0.85)
0.74 (0.69 - 0.83)
0.74 (0.68 - 0.76)

0.82 (0.74 - 0.88)
0.78 (0.67 - 0.84)
0.79 (0.73 - 0.84)

Model Phase Aorta

1 Training 0.93 (0.92 - 0.94)
Validation 0.92 (091 - 0.94)
Testing 0.93 (0.92 - 0.94)

2 Training 0.97 (0.96 - 0.97)
Validation 0.95 (0.94 - 0.96)
Testing 0.95 (0.95 - 0.96)

0.94 (0.92 - 0.95)
0.90 (0.85 - 0.92)
0.85 (0.77 - 0.88)

0.94 (0.92 - 0.96)
0.90 (0.85 - 0.92)
0.84 (0.82 - 0.87)

TABLE II: Model performance: Dice similarity coefficients of developed models in scans containing false lumen thrombosis

(FLT). Data are presented as median and interquartile range.

False lumen

Patent false
lumen

False lumen
thrombosis

0.85 (0.78 - 0.90)
0.82 (0.69 - 0.87)
0.83 (0.79 - 0.84)

0.84 (0.73 - 0.90)
0.80 (0.68 - 0.87)
0.82 (0.79 - 0.86)

0.75 (0.66 - 0.79)
0.72 (0.66 - 0.77)
0.63 (0.40 - 0.78)

0.94 (0.91 - 0.95)
0.91 (0.85 - 0.92)
0.86 (0.84 - 0.88)

0.93 (0.88 - 0.94)
0.90 (0.85 - 0.93)
0.85 (0.83 - 0.86)

0.77 (0.66 - 0.83)
0.76 (0.68 - 0.79)
0.50 (0.19 - 0.65)

Model Phase Aorta True lumen
1 Training 0.94 (0.92 - 0.94) 0.84 (0.77 - 0.87)
Validation 0.93 (0.90 - 0.94) 0.81 (0.69 - 0.85)
Testing 0.93 (0.91 - 0.94) 0.74 (0.71 - 0.77)
2 Training 0.96 (0.96 - 0.97) 0.93 (0.93 - 0.94)
Validation 0.95 (0.94 - 0.96) 0.92 (0.86 - 0.93)
Testing 0.96 (0.95 - 0.96) 0.86 (0.77 - 0.88)
3 Training
Validation
Testing

0.987(0.96 - 0.99)
0.95 (0.93 - 0.97)
0.99 (0.98 - 0.99)

0.92 (0.83 - 0.95)
0.91 (0.87 - 0.92)
0.85 (0.73 - 0.94)

developed model, that segmented PFL and FLT starting from
the FL ground truth, promisingly proved that, once the FL
is segmented correctly, the network is able to discriminate
between PFL and FLT with excellent performance. Taking
into consideration recent advances in FL segmentation [7],
and the possibility of combining this technique with the
current study, the realization of accurate FLT segmentation
can reasonably be expected in the near future.

A limitation of the study is the small sample size. A
larger training dataset may improve the performance of
the network. Secondly, the interobserver variability for the
FLT segmentations is suboptimal. While the TL and FL
interobserver analyses show DSC values higher than 0.90,
this is not the case for FLT. A possible explanation is
the difficulty to distinguish between slow blood flow and
FLT or a thick flap and thrombus around the flap. The
suboptimal reproducibility of FLT, even by expert observers,
poses a limitation to the development of supervised models.
Nevertheless, identification of large amounts of FLT might
be more relevant than that of small portions of clot.

Future studies are needed to improve segmentation perfor-
mance and investigate the voxel-level accuracy required to
provide meaningful prognostic information. Since multiple
CNN models have been proposed for segmenting TL and FL
in TBAD patients, future studies should rigorously compare
their performances and generalizability using a common,
independent and multicentric dataset. Moreover, future effort
should be made to create ensemble models in order to
overcome the limitations of individual segmenters.

V. CONCLUSION

We developed models for segmentation of TL and FL
on CTA-scans of patients with uTBAD, which are the key
features of aortic dissection and prerequisites for extraction

of other features. In addition, this study is the first to present
a step towards FLT quantification, which may improve
individual prognostication of patients with uTBAD.
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