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Abstract— Photoplethysmography (PPG) and accelerometer
(ACC) are commonly integrated into wearable devices for
continuous unobtrusive pulse rate and activity monitoring of
individuals during daily life. However, obtaining continuous
and clinically accurate respiratory rate measurements using
such wearable sensors remains a challenge. This article
presents a novel algorithm for estimation of respiration rate
(RR) using an upper-arm worn wearable device by deriving
multiple respiratory surrogate signals from PPG and ACC
sensing. This RR algorithm is retrospectively evaluated on a
controlled respiratory clinical testing dataset from 38 subjects
with simultaneously recorded wearable sensor data and a
standard capnography monitor as an RR reference. The
proposed RR method shows great performance and robustness
in determining RR measurements over a wide range of 4–59
brpm with an overall bias of -1.3 brpm, mean absolute error
(MAE) of 2.7±1.6 brpm, and a meager outage of 0.3±1.2%,
while a standard PPG Smart Fusion method produces a bias
of -3.6 brpm, an MAE of 5.5±3.1 brpm, and an outage of
0.7±2.5% for direct comparison. In addition, the proposed
algorithm showed no significant differences (p=0.63) in
accurately determining RR values in subjects with darker skin
tones, while the RR performance of the PPG Smart Fusion
method is significantly (P<0.001) affected by the darker skin
pigmentation. This study demonstrates a highly accurate RR
algorithm for unobtrusive continuous RR monitoring using an
armband wearable device.

Index Terms— Wearable device, Photoplethysmography, Ac-
celerometer, Respiration Rate Monitoring

I. INTRODUCTION

In recent years, development of wearable devices em-
bedded with photoplethysmograph (PPG) and tri-axial ac-
celerometer (ACC) has enabled unobtrusive remote moni-
toring of pulse rate and activity patterns as a cost-effective
essential tool widely adapted into our day-to-day lives. While
respiratory rate (RR) is a top predictor of serious illness
such as cardiac arrest and sepsis [1], in contrast to the
commonly measured pulse rate vital sign, RR measurement
is still not available in most widely used wearable sensors.
In clinical practice and out-of-hospital monitoring settings,
RR has consistently been the least frequently measured vital
sign [2]. Traditional stethoscope-based RR measurements
are subjective and laborious, whereas nasal gas sampling
lines or dual chest bands are obtrusive and uncomfortable.
Additionally, while PPG or ACC sensing modes are un-
obtrusive and more commonly available, there also exists
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a technological gap in producing accurate RR using these
signals. Even though there has been extensive literature on
RR measurements using PPG or ACC, a practical wearable
solution for continuous and accurate RR measurements still
remains elusive.

PPG measures tissue blood volume change and is widely
used for oxygen saturation and pulse rate monitoring. Mean-
while, the PPG waveform can be used for RR estimation
since it is modulated by ventilation in three ways [3]:
amplitude modulation (AM), frequency modulation (FM),
and baseline wandering (BW). A number of signal pro-
cessing methods including time-frequency analysis [4, 5],
incremental-merge segmentation [3], and auto-regressive
modeling [6] have been shown to extract respiratory modula-
tions from PPG waveforms; methods such as deep learning
have also been used to obtain RR from PPG directly [7].
However, a number of factors can affect the PPG-based RR
estimate, including (i) in-band low frequency Mayer waves
from bodily regulatory mechanisms, (ii) the Nyquist limit,
where the respiratory surrogate signals are undersampled and
aliased when the fundamental HR frequency is lower than
two times that of the RR frequency, (iii) dark skin tones
leading to very low PPG signal strength due to absorption
of light by melanin pigmentation, and last but not the least,
(iv) motion artifacts.

A representative example of RR values derived using a
modified PPG smart fusion method is illustrated in Figure
1 alongside simultaneously measured HR values and half of
the HR values for comparative purposes. Accurate tracking
of RR values using this standard PPG Fusion RR algorithm
is possible when the HR is at least two times greater than
the RR ground truth. However, when the Nyquist sampling
relationship between HR and RR is not met physiologically,
accurate tracking of RR using a PPG (or ECG) signal is
inherently impossible, leading to unacceptable error margins
when the RR range is higher than half that of HR, as shown.

Tri-axial ACC measures acceleration in three orthogonal
directions and is also widely integrated in wearable devices
for fitness monitoring (such as step count) and motion
analysis (such as gait, posture, balance). Meanwhile, ACC
is also feasible for sensing respiration-induced body move-
ment to estimate RR in real time. In recent years, adaptive
line enhancer and spectral fusion [8], Kalman filter based
fusion [9], principal component analysis (PCA) [10], and
independent component analysis [11] methods have been
developed for this purpose. Although ACC is not affected
by Mayer waves, the Nyquist limit on low HR, or skin tone,
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Fig. 1. The influence of the Nyquist relationship between heart rate (HR)
and respiration rate (RR) frequencies is illustrated from a sample subject.
The standard PPG Fusion algorithm (blue) is able to estimate RR (black)
while the ground truth RR is below half of HR (green), but it produces
clinically unacceptable levels of error margins when the ground truth RR
exceeds half of HR, i.e., the Nyquist limit.

any periodic motions stronger than the respiration-induced
motion could become interference and affect the ACC-based
RR estimation. The most common ACC measurement site for
estimating RR is the chest [9, 10] using a chest belt/strap or
adhesive patch sensors [12], but they are not as comfortable
or convenient as a wristband/armband for long-term use. The
upper arm is a better measurement site for RR purpose, since
not only is the chest wall movement better transmitted to the
upper arm, but also interference motion is significantly less
frequent in upper arm as compared to wrist site under daily
living conditions.

This article first presents a novel method for continuous
RR estimation using both PPG and ACC sensing from an
upper armband wearable device. Secondly, the performance
of the proposed RR algorithm is evaluated and validated
by retrospective analysis on a diverse clinical dataset of
38 participants with gold standard capnograph reference
RR measurements. Finally, the performance of a standard
PPG fusion method implemented from the literature is also
evaluated for comparative analysis.

II. MATERIALS AND METHODS

A. Data collection

This work retrospectively analyzes a collective data ac-
quired from 38 healthy subjects, ages 18 to 70 years, by
a clinical laboratory (Clinimark, Louisville, CO), involving
the IRB-approved respiratory rate protocols. The respiratory
study protocols, in one case, required the participants to be
spontaneously breathing for about 15–25 minutes in sitting
and supine body postures. In another case, the protocol in-
volved a metronome breathing exercise session for a duration
up to 40 min, where the subjects were guided to perform low
(15, 10, 5 brpm) and high (15, 20, 25, 30, 35, 40, 45, 50
brpm) respiration rates. The participants followed cues as
closely as possible with natural variations, such that some

subjects were not able to execute the lower or upper corner
values of the desired RR range.

In these respiratory study protocols, a reusable armband
wearable sensor named Everion (Biovotion, Zurich) was
worn on one or both of each subject’s upper arms to measure
and record PPG and ACC signals at a 51.2 Hz sampling rate;
simultaneously, either a mouthpiece attached with a sample
line or a flow-by mask with large bore ventilation tubing
was outfitted to each subject for measurement of EtCO2 by
a FDA-cleared device (GE Healthcare Datex-Ohmeda S/5
monitor with compact airway module M-COVX). Prior to
the test, the procedures were explained to the subjects, and
subjects completed health assessment and consent forms. A
pulse oximeter and an ECG (GE Healthcare S/5 Monitor
with M-NESTPR module) were also applied to the subjects
for safety monitoring.

B. RR Estimation Algorithm

The RR algorithm presented in this work involves simul-
taneous processing of PPG and ACC signals measured on
an upper arm location using Everion and determining RR
outputs in a parallel fashion. A PPG-based RR estimate
is derived by extracting surrogate respiration waveforms
from unique modulations in the PPG signal; concurrently,
an accelerometer-based RR estimate is also derived by ex-
tracting the time-frequency spectrum from the ACC signal
and performing peak-tracking. Finally, these two independent
RR estimates are fused based on their quality. Due to
the dynamic synthesis of multi-mode respiratory waveforms
extracted from ACC and PPG signals, the proposed algorithm
is denoted as A-P Synthesis.

1) PPG-based RR algorithm: Respiration rate is esti-
mated from the PPG signal by first extracting surrogate
respiratory signals such as amplitude modulation (AM), fre-
quency modulation (FM), and baseline wander (BW). Each
surrogate signal is sampled at pulse-related peaks in the PPG
waveform, which are located using a peak-finding method.
The surrogate signals are then interpolated to achieve uni-
form sampling rate and filtered to isolate the respiratory
component. Breath-related peaks in the respiratory signal are
identified again using a peak-finding method, with an adap-
tive peak-to-trough threshold to remove erroneous peaks. An
estimate of RR for each surrogate is then calculated by taking
the reciprocal of the average of the most recent 30 inter-
breath intervals with low motion activity. A quality metric
is calculated for each estimate based on the irregularities of
the corresponding surrogate respiratory signal. That metric
is then used to combine the estimates through a weighted
average, resulting in one final PPG-based RR estimate.

2) ACC-based RR algorithm: Under daily living condi-
tions, a subject’s upper arm may have different angles to
the chest depending on posture at different times. Hence, we
firstly project the three orthogonal 30-sec band-pass filtered
ACC waveforms to the first principal axes acquired from
PCA analysis, which is considered to be the ventilation-
induced movement direction and is updated every 5 sec.
Note that for each segment (30-sec waveform), we check the
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Fig. 2. Example of time-frequency spectra (TFS) of PPG and Accelerometer signals along with the capnograph RR reference values superimposed on
the spectra for direct comparisons of RR ridges. (Top) PPG signal spectra shows relatively weak RR bands masked by strong Mayer waves near 0.1 Hz
(6 brpm). (Bottom) TFS of the projected principal respiratory component of tri-axial accelerometer shows a dominant and clear RR trace during relatively
stationary states, but it also shows high interference in the RR trace during test transitions involving uncontrolled natural movements.

second-by-second motion activity (MA) level and select only
sections of the waveform whose MA is below a threshold
to exclude interference from other motion. If less than 15
sec has MA below the threshold, then that segment is
skipped. Otherwise, from the projected principal waveform,
the FFT spectrum and its kurtosis score are derived. The
FFT spectrum of each segment forms the time-frequency
spectrum as shown in Figure 2, bottom panel, from which
we can see a clear RR trace which changes over time. For
real-time RR estimation, spectrum peak tracking (SPT) is
applied to the time-frequency spectrum since RR normally
changes gradually and because each segment’s waveform
largely overlaps with the previous one.

The SPT starts with a global search on the FFT spectrum,
whose highest peak location is chosen as the first RR
estimation. From there, each new spectrum is searched for
a dominant peak around the previous RR estimate. If no
dominant peak is found, then the previous RR is used for
up to 3 continuous segments; beyond 3 segments, a new
global search is conducted. During SPT, if any segment’s
Kurtosis score is below a threshold or if the variance of
the principal waveform exceeds a threshold, we suspect the
subject’s arm is at moderate/high movement, hence ACC is
not suitable for RR estimation. During these segments there
are no outputs for the ACC-based RR algorithm as shown in
Figure 6. Simultaneously, the quality of this RR estimate is
derived from the variance of the principal waveform of this
segment.

3) PPG and ACC Combination: Once both the PPG and
ACC estimates of RR are computed, the one with the highest
quality is selected as the final RR output. If neither of the
methods produce an estimate with high enough quality, then
outage is recorded.

C. Performance and Statistical Analyses

Validation of the PPG Smart Fusion and A-P Synthesis
models was performed through post-processing analysis of

Fig. 3. Performance of A-P Synthesis is illustrated for the same represen-
tative example shown in Figure 1. The proposed algorithm accurately tracks
the ground truth RR values, particularly above half of the heart rate.

the PPG and ACC raw data. In this retrospective post-
processing analysis of multiple clinical datasets, the online
performance was carried out uniformly using MATLAB
computing platform [13] by providing data in 1-second
intervals. Performance of each method was assessed by
comparing to reference RR on a second-by-second basis.
Error values were calculated as model prediction of RR mi-
nus reference; thus, positive values are overestimates, while
negative values are underestimates. Recording positions with
no reference values were ignored, and any unphysiological
abrupt jumps in reference values were removed (total only
3.8% of the reference points).

Average mean absolute error (MAE) refers to the average
error across subjects, while aggregate MAE refers to averag-
ing across all samples. Bias was calculated as average signed
error, and 95% limits of agreement (LoA) were computed
as the average error ±1.96 * standard deviation. Outage
was calculated as the amount of reference data with no
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valid predicted RR value divided by the total amount of
reference data. Statistical comparisons between demographic
categories of subjects, including Fitzpatrick scale, gender,
age, and BMI, were performed using two-sample t-tests over
average MAE values of the study cohort, grouped according
to the demographic variable of interest.

III. RESULTS

RR prediction from a representative example shown in
Figure 1 is first examined to exhibit the strength of the A-P
Synthesis method, whereas the traditional PPG Smart Fusion
method produces clinically unacceptable error margins for
higher RR ranges. A comparison of the time-frequency
spectra of PPG and ACC signals of this same example is
shown in Figure 2. The PPG spectrum is dominated by
low frequency Mayer waves near 6 brpm (top panel). By
high pass filtering above the Mayer wave frequency, this
interference could be eliminated; however, it would also
make low RR undetectable. In contrast, the accelerometer
does not have the Nyquist frequency limitation, nor is it
affected by Mayer waves as shown in Figure 2. As a result,
the energy at RR is very prominent in the bottom time-
frequency spectrum, which is derived from the ACC-fused
signal.

The performance of our A-P Synthesis algorithm on the
example recording is shown in Figure 3. In contrast with
the standard literature algorithm, A-P Synthesis is able to
accurately predict RR up to 50 brpm. Further, the proposed
algorithm is less sensitive to low-frequency Mayer waves, as
shown by little to no erroneous predictions near 6 brpm in
this example. Further, the RR prediction during each paced
breathing plateau is very stable and shows little noise after
reaching the steady state true RR.

A summary of the performance of A-P Synthesis over
all tested recordings from 38 participants (62 independent
Everion recordings, and 84,002 samples) is shown in Table
I. Our A-P Synthesis method produces a highly accurate RR
predictions with an average MAE of 2.7±1.6 brpm over
the full range of 4-59 brpm, while the PPG Smart Fusion
method produces an average MAE of 5.5±3.1 brpm. From
the spontaneous and metronome breathing tests conducted,
the reference RR ranges from 4-59 brpm with a distribution
of 19.1 ± 9.6 brpm. For a more prevalent range of 35
brpm or below, the average MAE decreases even further to
2.3±1.4 brpm. The outage of the RR algorithm is only 0.3%,
and the correlation between the prediction and the reference
RR is much stronger than the PPG Smart Fusion Method,
regardless of the RR evaluation range. Finally, the bias and
the 95% LoA are much more accurate and narrow compared
to the PPG Smart Fusion method as shown in Table I.

The MAE Performances of RR prediction using A-P
Synthesis and PPG Smart Fusion methods are compared
in Figure 4 between the recordings of darker (14.6%) and
lighter skin tones. The PPG Smart Fusion method has sig-
nificantly (p<0.001) higher error for darker skin tones, while
A-P Synthesis exhibits no significant differences (p=0.63) in
accurately predicting RR for darker or lighter skin tones.

TABLE I
RR ALGORITHMS’ PERFORMANCE COMPARISONS FROM A

COLLECTIVE CLINICAL COHORT OF 38 SUBJECTS.
Reference Statistic PPG Smart A-P
RR Range Fusion Synthesis

Avg MAE (brpm) 5.5 (3.1)1 2.7 (1.6)
4-59 brpm Agg MAE (brpm) 5.8 (7.0) 2.7 (4.9)

84,002 samples Outage (%) 0.7 (2.5) 0.3 (1.2)
Correlation 0.49 0.83
Bias (brpm) -3.6 -1.3

Upper LoA2 (brpm) 12.7 9.4
Lower LoA (brpm) -20.0 -11.9
Avg. MAE (brpm) 4.6 (2.4) 2.3 (1.4)

4-35 brpm Agg. MAE (brpm) 4.8 (5.4) 2.2 (3.8)
79,200 samples Outage (%) 0.6 (2.5) 0.3 (1.3)

Correlation 0.57 0.85
Bias (brpm) -2.5 -0.8

Upper LoA (brpm) 10.9 7.7
Lower LoA (brpm) -15.8 -9.3

1 Numbers in parentheses indicate 1 standard deviation across subjects
(Average MAE and Outage) or across samples (Aggregate MAE).

2 Limits of Agreement (LoA) indicate the 95% confidence interval of
error values.

Fig. 4. A bar chart illustrates the MAE performances of A-P Synthesis and
PPG Smart Fusion methods for RR prediction for darker and lighter skin
tones. A-P Synthesis shows no significant difference between darker and
lighter skin tones, while the literature model (PPG Smart Fusion) shows
significantly (p < .001) higher error for darker skin tones. Error bars depict
1 standard error of the mean.

A-P Synthesis algorithm’s MAE performances were further
compared across other subject population demographics, and
no significant differences (p>0.05) among genders of female
vs male, age groups of under 40 years vs over 40 years, and
BMI of under 25 vs over 25 were found.

Bland-Altman plots comparing the performance of PPG
Smart Fusion (top) with A-P Synthesis (bottom) are shown
in Figure 5. Scatter plot markers are scaled by the square root
of the number of samples within a bin for better visualization.
Histograms of the mean of reference RR and model predicted
RR are shown on the x-axes; histograms of error values are
shown on the y-axes. Both histograms are normalized by
their maximum values.

The distribution of error values in the PPG Smart Fusion
model clearly shows that there is a negative bias leading to
under prediction (-3.6 brpm average bias) of RR measure-
ments with wide error margins. In contrast, the proposed A-P
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Fig. 5. Bland-Altman agreement analysis of (top) a standard PPG Fusion
method and (bottom) the proposed A-P Synthesis algorithm are shown along
with the histograms of error distribution versus the average of reference and
predicted RR. Scatter plot marker sizes are scaled by the square root of the
number of samples within a bin.

Synthesis algorithm is able to accurately estimate RR values
for the entire wide range, as evidenced by a low bias of about
one breath, absence of negative bias slope, very tight error
margins, and relatively narrow limits of agreement.

IV. DISCUSSION

This paper presents a novel method, A-P Synthesis, for
continuous RR estimation using an armband wearable de-
vice, embedded with optical PPG sensors and a tri-axial
accelerometer. For the first time, PPG-based RR estimation
and ACC-based RR estimation are smartly combined to
achieve far more accurate and robust continuous RR esti-
mations over a wide range up to 4-60 brpm. The proposed
algorithm also achieves the highest coverage and reliability
from having two complementing methodologies, and shows
no statistically significant difference in performances across
different age ranges, skin tones, or BMI groups. This method
is also computationally efficient and has been successfully
integrated and validated on the Everion armband device for
long-term RR estimation in real time.

The A-P Synthesis algorithm showcased an accurate and
consistent RR estimation for a wide range of breathing rates,
particularly including the higher range (35-60 brpm) above
half of the heart rate. Such capability and performance of the
proposed algorithm in convenient and unobtrusive wearable
sensors allow for better capture of abnormal respiration rates
in chronic and acute respiratory conditions including anxiety,
congestive heart failure, asthma, lung disease, pneumonia,
use of narcotics, and drug overdose. For comparison, the lit-
erature reports that current devices are capable of measuring
RR only over a very narrow range of values, typically limited

Fig. 6. A sample recording of a subject illustrates the RR performances
of the proposed A-P Synthesis method versus an ACC-based subset RR
algorithm mode during relatively higher motion activity. ACC alone can
produce direct accurate RR estimations during perfectly still conditions, but
it can suffer with low coverage from such a real-world application. Despite
that, the final A-P Synthesis algorithm can complement with PPG mode
estimations and can track RR accurately and continuously, as illustrated.

to the clinical RR range of a healthy person, which is around
10-30 brpm [14]. As examples, the Kick LL smartwatch
under development directly limits RR between 12 and 30
brpm [15], while research with the Empatica E4 device
classifies fast breathing as above a mere 15 brpm [16].

The present clinical testing data covers a wide range of
skin tones (from Fitzpatrick scale of I to VI), ages (from
18 to 69 yrs old), and BMI (from 16.7 to 30.2). The study
demonstrates no statistically significant difference in the RR
estimation errors of A-P Synthesis across different age/skin
tone/BMI groups. The green LED wavelength commonly
used to obtain the PPG signal in wearable devices undergoes
greater absorption for subjects with darker skin tones, which
can in turn substantially influence the signal quality and
affect the RR estimation error tremendously. Hence, the
standard PPG Fusion method shows greater difficulty in
predicting RR for subjects with darker skin tone, as shown
in Figure 4. In contrast, however, A-P Synthesis is able to
more accurately estimate RR regardless of the skin tone and
BMI.

Part of the novelty of the A-P Synthesis algorithm is the
adaptive use of both PPG and ACC signals in producing sta-
ble, reliable and accurate RR estimation using a uncommon,
but convenient site of sensor attachment. The two signals
capture unique dynamics of the respiratory system and have
different failure modes complimenting each other in certain
conditions such as low perfusion and movements. This syn-
ergy is exemplified in Figure 6. High motion activity periods
tend to produce an unreliable ACC derived respiratory signal;
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however, a strong estimate of RR is still produced using the
PPG signal and the proposed PPG synthesis module during
these periods since the green PPG signal at the upper arm
has been shown to be relatively robust to motion [17, 18]. On
the other hand, in cases where the PPG signal is unreliable or
even wholly absent due to poor skin contact or other factors,
a reliable RR estimate can still be derived from the ACC
signal alone using the proposed ACC synthesis module.

One of the distinct advantages of the Everion armband
that enables this combination of signals is the location of the
device. Given that the device is worn on the upper arm, chest
wall movement during inhalation and exhalation can be very
well captured by the tri-axial accelerometer under stationary
conditions. Meanwhile, the green PPG signal strength and
motion artifact resistance at the upper arm are better than at
other peripheral sites such as the wrist and finger [18] . In
addition, the location offers a more comfortable fit than de-
vices worn on or adhered to the chest for RR measurements
using ECG, capacitive sensors [19], and impedance sensors
[20].

V. CONCLUSION

A novel A-P Synthesis algorithm is presented for con-
tinuous RR estimation using an armband wearable device,
and the retrospective analysis of a clinical recorded dataset
demonstrates a low level of RR prediction error for a wide
range of respiration rates up to 60 brpm. The combination of
ACC and PPG sensing modalities helps to take advantages
of the strengths of each signal. The accelerometer provides
robust direct RR estimation over a much wider range of
breathing rates during relatively stationary conditions, while
the PPG signal maintains a good RR measurement under
moderate activity covering the vast majority of continuous
patient monitoring scenarios. This accurate and consistent
method of RR estimation in a comfortable wearable device
is invaluable to healthcare applications ranging from personal
fitness to long-term monitoring of patient health.
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