
 

Abstract—this study investigates the difference in effective 

connectivity among novice medical students trained on physical 

and virtual simulators to perform the Fundamental 

laparoscopic surgery (FLS) pattern cutting task (PC). We 

propose using dynamic spectral Granger causality (GC) in the 

frequency band of [0.01-0.07]Hz to measure the effect of surgical 

training on effective brain connectivity. To obtain the dynamics 

relationship between the cortical regions, we propose to use the 

short-time Fourier transform (STFT) method. FLS pattern 

cutting is a complex bimanual task requiring fine motor skills 

and increased brain activity. With this in mind, we have used 

high resolution functional near-infrared spectroscopy to 

leverage its high temporal resolution for capturing the change 

in hemodynamics (HbO2) in 14 healthy subjects. Analysis of 

variance (ANOVA) found a statistically significant difference in 

"LPMC granger causes RPMC" (LPMC RPMC) in the 

subject trained on these two simulator in the first 40 sec of the 

task. We showed that the directed brain connectivity was 

affected by the type of surgical simulator used for training the 

medical students.  

 
Key Words— Fundamental laparoscopic surgery, fNIRS, 

dynamic Granger causality, Effective connectivity, physical and 

virtual surgery simulator. 

I. INTRODUCTION 

SIMULATION-based laparoscopic surgery training has 

been integrated into the resident program curriculum 

because it requires a specific set of skills necessary for 

carrying out surgery. Pattern cutting (PC) is one of the five 

manual tasks designed by the Fundamentals of Laparoscopic 

Surgery (FLS) committee to develop hand-eye coordination, 

visual-spatial perception, and non-dominant hand 

proficiency. A physical training toolbox is used for the FLS. 

A virtual basic laparoscopic skill trainer (VBLaST) has been 

developed to replicate the FLS tasks to overcome well known 

drawbacks of the physical trainer box [1]. Among these, the 

virtual simulator is seen as more promising for teaching and 

assessing performance. Virtual simulators are preferred 

because they are reusable, do not need consumables and 

allow more objective quantification of performance. 

Nevertheless, the metrics used for measuring proficiency are 

still an active search area for which neuroimaging-based 
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metrics are proposed [2]. Thus, it is essential to compare 

neuroimaging-based differences between the physical and the 

virtual simulator (VBLaST) based training.  

In this study, we investigated the FLS pattern cutting (PC) 

task that is a complex bimanual laparoscopic task. Our prior 

work [2] has established the feasibility of fNIRS technology 

to measure FLS PC task-related hemodynamic activity at the 

related cortical regions. The feature that makes this 

technology suitable for our study is its potential for mobile 

brain-imaging of subjects without interfering with the 

surgical training tasks performed in a standard task 

environment. Prior works have shown that the neurovascular 

coupling-related fluctuations in the oxyhemoglobin 

concentration (HbO2) occur in the low-frequency range of 

[0.01-0.07]Hz [3].  

In this study, we investigated neurovascular coupling-related 

dynamic effective connectivity based on spectral Granger 

causality. Granger causality is a measure of functional 

connectivity that can provide the strength and direction of 

information flow between two simultaneously activated brain 

regions[4]. Compared to generally used hypothesis-driven 

causality measurement methods such as structural equation 

modeling (SEM) and dynamic causal modeling  (DCM),  GC  

is a data-driven method for exploring the causal relationships 

which don't make any a priori assumption. This study 

investigated dynamic effective connectivity based on a 

sliding window approach to GC [5]. Here, we make a 

quasistationarity assumption in the sliding window so the 

window cannot be too long; however, we cannot make it too 

short for reliable spectral estimates due to the signal's 

stochastic nature. 

Our previous study [2] investigated functional connectivity 

based on magnitude-squared wavelet coherence. We found 

the inter-hemispheric functional connectivity between the 

primary motor cortices to distinguish (p < 0.05) the brain 

network's edge between the physical and the virtual 

simulators (under review). However, magnitude-squared 

wavelet coherence did not establish the directionality of the 

causation\influence between these two regions. Therefore, 

we used sliding window-based GC to measure directional 
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brain connectivity. 

II. MATERIAL AND METHODS 

A. Subjects 

The study was approved by the Institutional Review Board 

of Massachusetts General Hospital, University at Buffalo, 

and Rensselaer Polytechnic Institute. Fourteen healthy right-

handed novice medical students were recruited for the study. 

Subjects were divided into two cohorts; the physical 

simulator group (eight subjects) and the virtual simulator 

group (six subjects). All the subjects were instructed verbally 

with a standard set of instructions on how to complete the 

FLS PC task successfully. The optical probes or optodes held 

by a standard electroencephalography cap (www.easycap.de) 

were carefully mounted to avoid hairs in between the 

source/detector and the scalp. During the trial, the subjects 

were asked to perform the FLS PC task, where the goal was 

to cut along the circular mark on a piece of gauze as 

accurately and as quickly as possible. After a baseline rest 

period of 1min, the trial was started and the maximum time 

provided for doing the PC task was 5 min. 

B. Experimental procedure and measurement  

Based on the association of learning a fine motor skill, we 

identified five functionally specialized brain region, namely 

left primary motor cortex (LPMC), right primary motor 

cortex (RPMC), supplementary motor area (SMA), left 

prefrontal cortex (LPFC), and right prefrontal cortex (RPFC) 

for observing GC while performing PC task. A 32-channel 

continuous-wave near-infrared spectrometer (CW6 system, 

TechEn Inc.) was used that delivered infrared light at 690nm 

and 830nm. The optode montage consisted of eight long-

distance and eight-short distance sources coupled to 16 

detectors. 25 long-distance (30-40mm) channels and eight 

short-distance (~8mm) channels that measured brain 

activation at preidentifed regions with a sampling frequency 

of 25Hz. 

C. Data Processing 

Preprocessing of the raw fNIRS data was kept minimal to 

reduce misleading results [6]. Motion artifact detection and 

correction were performed using combined spline 

interpolation and Savitzky-Golay filtering in HOMER3 

(https://github.com/BUNPC/Homer3), which is an open-

source software in Matlab (Mathworks Inc., USA). We did 

not use filtering as it can lead to spurious and missed 

causalities. Then, modified Beer-Lambert law was used to 

convert the detectors' raw optical data into optical density. 

Then, the conversion of optical density to changes in HbO2 

concentrations with partial path-length factors of 6.4 (690nm) 

and 5.8 (830nm) was performed, followed by short-

separation regression in HOMER3. The long separation 

channels (inter-optode distance of 30-40mm) measured the 

average change in the HbO2 from pre-task baseline at the 

task-relevant brain regions [8], including left PFC (LPFC), 

right PFC (RPFC), left PMC (LPMC), right PMC (RPMC), 

and SMA. The signal was found stationary for the 40s non-

overlapping windows used for STFT.  

D. Granger Causality Analysis 

Consider two time-series, X1(t) and X2(t), where we assume 

each of these time series can be modeled by the combination 

of one another as expressed below:  

 𝑋1(𝑡) = ∑ 𝑎𝑖𝑋1(𝑡 − 𝑖) + ∑ 𝑏𝑖𝑋2(𝑡 − 𝑖) +𝑛
𝑖=1

𝑛
𝑖=1

𝜖1(𝑡)  
(1) 

 

 𝑋2(𝑡) = ∑ 𝑐𝑖𝑋1(𝑡 − 𝑖) + ∑ 𝑑𝑖𝑋2(𝑡 − 𝑖) +𝑛
𝑖=1

𝑛
𝑖=1

𝜖2(𝑡)  
(2) 

where n is the order of the process. a, b, c and d are the 

coefficients, and 𝜖(𝑡) is the additive prediction error. If we 

introduce a lag operator, Lk, such that:  

𝐿𝑘𝑋(𝑡) = 𝑋(𝑡 − 𝑘) 
then we can rewrite the equations (1) and (2) as:  

 𝑋1(𝑡) =  (∑ 𝑎𝑖𝐿𝑖𝑛
𝑖=1 )𝑋1(𝑡) + (∑ 𝑏𝑖𝐿𝑖𝑛

𝑖=1 )𝑋2(𝑡) +

𝜖1(𝑡)  

 

(3) 

 

 𝑋2(𝑡) =  (∑ 𝑐𝑖𝐿𝑖𝑛
𝑖=1 )𝑋1(𝑡) +  (∑ 𝑑𝑖𝐿𝑖𝑛

𝑖=1 )𝑋2(𝑡) +

𝜖2(𝑡)  
(4) 

 

Equations 3 and 4 can be arranged in a matrix form as: 

 (
𝑎(𝐿) 𝑏(𝐿)
𝑐(𝐿) 𝑑(𝐿)

) (
𝑋1(𝑡)
𝑋2(𝑡)

) =  (
𝜖1(𝑡)
𝜖2(𝑡)

)  

 
(5) 

To work in the frequency domain, we transform equation (5) 

using the Fast Fourier Transform (FFT) and get 

 (
𝑎(𝜔) 𝑏(𝜔)
𝑐(𝜔) 𝑑(𝜔)

) (
𝑋1(𝜔)
𝑋2(𝜔)

) =  (
𝜖1(𝜔)
𝜖2(𝜔)

)  (6) 

where 𝜔, is the frequency. We can rewrite equation 6 as:  

 (
𝑋1(𝜔)
𝑋2(𝜔)

) =  (
𝐻11(𝜔) 𝐻12(𝜔)
𝐻21(𝜔) 𝐻22(𝜔)

) (
𝜖1(𝜔)
𝜖2(𝜔)

) (7) 

where H is the transfer matrix.Then, GC can be found from 

the transfer matrix, H, and the spectral matrix, S(𝜔), that are 

related as follows  [7]: 

 𝑺(𝜔) = 𝑯(𝜔)𝚺(𝜔)𝑯∗(𝜔) (8) 

where * is the transposed conjugate operator. Here, the 

Wilson algorithm can factorize the spectral matrix, S(𝜔), 

found from FFT:  

[
𝑆11(𝜔) 𝑆12(𝜔)

𝑆21(𝜔) 𝑆22(𝜔)
]

= [
𝐻11(𝜔) 𝐻12(𝜔)

𝐻21(𝜔) 𝐻22(𝜔)
] [

Σ11(𝜔) Σ12(𝜔)

Σ21(𝜔) Σ22(𝜔)
] [

𝐻∗
11(𝜔) 𝐻∗

12(𝜔)

𝐻∗
21(𝜔) 𝐻∗

22(𝜔)
]  

However, if the ∑ (𝜔)12 > 0, then there is a third term 

resulting from the influence that correlated noise exerts on the 

spectra, which can be removed by the transformation 

introduced by Geweke [8], which we will use here (indicated 

by a tilde), see [7], [8] for details. Using Geweke's 

transformation and expanding the equation (8), the first term 

of S(𝜔) can be written as: 

 𝑆11(𝜔) =  𝐻11(𝜔)Σ11(𝜔)𝐻̃11
∗ (𝜔) +

𝐻𝐻12(𝜔) (Σ22 −
Σ12

2

Σ11
) 𝐻12

∗ (𝜔)  
(9) 

The first term of the equation (9) is the intrinsic term, and the 

second is the causal influence from X2 to X1 term [8]. So, the 

strict Granger causality for the frequency range from X2 to X1 
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(𝐼2→1 ) can be defined by dividing by the intrinsic term as 

follows: 

 
𝐼2→1 =  log (

𝑆11(𝜔)

𝐻11(𝜔)Σ11𝐻∗
11(𝜔)

) (10) 

Following similar steps, the Granger causality from X1 to X2 

(I12) is expressed as:  

 
𝐼1→2 =  log (

𝑆22(𝜔)

𝐻22(𝜔)Σ22𝐻∗
22(𝜔)

) (11) 

This study has used Granger causality to estimate the linear 

causal relationship between each pair of the following brain 

regions: LPMC, RPMC, SMA, LPFC, and RPFC. To 

estimate the time-varying Granger causality, Short Time 

Fourier Transformation (STFT) was used. STFT is a sliding 

window method allowing to measure the GC over time. For 

this study, we selected non-overlapping 40 seconds time-

windows based on the theoretical demonstration by Zalesky 

[9], and the STFT GC was computed using a Matlab toolbox 

[10] [11]. We selected the neurovascular coupling specific 

frequency band [0.01-0.07] Hz that avoids the systemic noise 

present outside of this frequency band. We averaged the GC 

in the neurovascular coupling frequency range [0.01 – 0.07] 

Hz. We then conducted statistical testing to compare the 

dynamic effective brain connectivity between the physical 

and the virtual simulators. 

E. Statistical Testing 

The GC strength for each forward and backward 

connections (i.e., LPFCRPFC, LPFCLPMC, 

LPFCRPMC, LPFCSMA, RPFCLPFC, 

RPFCLPMC, RPFCRPMC, RPFCSMA, 

LPMCLPFC, LPMCRPFC, LPMCRPMC, 

LPMCSMA, RPMCLPFC, RPMCRPFC, 

RPMCLPMC, RPMCSMA, SMALPFC, 

SMARPFC, SMALPMC, SMARPMC) were used for 

statistical testing. We first used the Shapiro-Wilk normality 

test for each connection in both the cohorts. ANOVA 

parametric test or Wilcoxon rank sum non-parametric test 

compared inter-regional GC between the physical and virtual 

simulator group for significant difference (p<0.05).  

III. RESULTS 

An illustrative example of inter-regional GC in the frequency 

range of [0-0.1] Hz is shown in the subplots of Fig. 1. Here, 

each subplot represents an inter-regional brain connection (N 

= 20). Then, the GC's average in the frequency band of [0.01-

0.07]Hz for each inter-regional brain connection is shown in 

figure (2). The normality test showed that most of the GC 

measures satisfied normal distribution for all the windows in 

both the cohorts. ANOVA found a statistically significant (p 

<0.05) difference in LPMC RPMC inter-regional brain 

connection between physical and virtual simulator in the first 

time window, which is shown in table (I). Moreover, 

LPMC RPMC and RPMCLPMC inter-regional brain 

connection showed alternating modulation during the latter 

part of the FLS PC task, as shown in Fig. 3. 

 
Fig. 3.  Alternating change in the inter-regional directed brain connectivity 
(GC) between primary motor cortices 

S.N. Connection window_1 window_2 

1 LPFCRPFC 0.381 0.094 

2 LPFCLPMC 0.968 0.339 

3 LPFCRPMC 0.067 0.793 

4 LPFCSMA 0.118 0.115 

5 RPFCLPFC 0.530 0.137 

6 RPFCLPMC 0.333 0.112 

7 RPFCRPMC 0.545 0.781 

8 RPFCSMA 0.303 0.138 

9 LPMCLPFC 0.396 0.872 

10 LPMCRPFC 0.583 0.527 

11 LPMC-->RPMC 0.029 0.240 

12 LPMC-->SMA 0.717 0.985 

13 RPMC-->LPFC 0.524 0.148 

14 RPMC-->RPFC 0.607 0.529 

15 RPMC-->LPMC 0.887 0.207 

16 RPMC-->SMA 0.239 0.127 

17 SMA-->LPFC 0.859 0.086 

 
Fig. 1.  Illustrative example of GC measured using STFFT. Each subplot 
represents the GC for each connection (depicted as from and to), the horizontal 

axis is the frequency axis and the vertical is the GC axis. The connecting 
number 1,2,3,4 and 5 corresponds to LPFC, RPFC, SMA, LPMC and RPMC 

respectively.  

  

1016



 

18 SMA-->RPFC 0.671 0.163 

19 SMA-->LPMC 0.685 0.847 

20 SMA-->RPMC 0.628 0.424 

Table 1: p-values from the analysis of variance of each inter-regional brain 

connection to compare between the physical and virtual simulator 

IV. DISCUSSION 

In this study, we focused on five brain regions that are 

considered to directly associate with FLS PC tasks based on 

our prior work [2]. We found that the inter-regional directed 

brain connectivity (GC) of LPMC  RPMC was different (p 

<0.05) at the start of the FLS PC task for the novice medical 

students trained on the physical simulator when compared to 

those compared to training on a virtual simulator. This 

aligned well with our prior work using magnitude-squared 

wavelet coherence (in press )[12] that showed inter-regional 

brain connectivity between the primary motor cortices to be 

distinguishing between training in the physical versus virtual 

simulator. Here, the left hemisphere is the dominant 

hemisphere in the right-handed subjects, so we postulate 

inter-hemispheric inhibition (IHI) from LPMC to RPMC at 

the beginning of the FLC PC task that is signifzicantly 

different between the physical and virtual simulator training. 

Fig. 3 illustrates the alternating nature of LPMC  RPMC 

and RPMC  LPMC connectivity where the relationship 

between IHI, inter-hemispheric connectivity, and bimanual 

coordination during training performed in physical and 

virtual simulator needs neurophysiological investigation for 

simulator specificity [13]. 

Our results aligned well with the prior works using whole-

brain imaging [14] that have demonstrated the necessity of 

the modulation of interhemispheric inhibition for bimanual 

coordination. However, his study has certain limitations, e.g., 

we did not perform an exhaustive search for optimal sliding 

window duration and stride in this study [15]. In the future, 

fNIRS based dynamic directed brain connectivity approach 

can be used for the brain-behavior investigation to assess and 

improve more complex bimanual laparoscopic surgical skills. 

V. CONCLUSION 

In this study, we conclude the following from our results, 

 LPMCRPMC effective brain connectivity 

distinguishes between physical and virtual surgical 

simulators at the start of the FLS PC task by the 

novice. 

 LPMCRPMC and RPMCLPMC effective brain 

connectivity show alternating modulation at the latter 

part of the FLS PC task by the novice in both the 

physical and the virtual surgical simulators. 
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