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Abstract— A Kapitza’s pendulum shows that it is possible
to stabilize an inverted pendulum by making its base oscillate
vertically. This action seems to introduce an inertial effect which
will produce an attractor about the upright vertical position.
This work shows that the upright posture of the trunk achieved
while walking can be explained using a combination of a vertical
oscillation and an angular stiffness regulation at the pelvis. This
is shown with an estimated oscillation and stiffness obtained
from video recordings of an unimpaired and a Parkinsoninan
gaits. By simulating the dynamic model of the pendulum for a
range of parameters, a series of stability conditions are found.
They show that the introduction of the vertical oscillation results
in a fast stabilization of the trunk and point to control strategies
which rely on the system’s dynamics.

I. INTRODUCTION

Literature regarding posture stabilization mainly falls into
two camps. It states that the upright posture is controlled by
(i) the stiffness of the joints, specifically of the ankle [1],
(ii) and the intermittent control of position [2], [3].These
paradigms can sometimes be combined to show intermittent
control in the framework of stiffness control [4].

The intermittent control model is often constructed as
a continuous-time feedback controller with a delay which
incorporates a switching strategy between two controllers in
order to reach bounded stability [5].

Intermittent control can be simplified by thinking that the
effect of bounded stability could be generated by an imposed
oscillation, in a similar mamner to the Kapitza’s pendulum.
The dynamic model of Kapitza’s pendulum describes the
stabilizing effect that a vertical oscillation has on the system.
It has been shown that the oscillation introduces an inertial
effect equivalent to a time varying stiffness which can coun-
teract gravity under certain conditions [6]–[9], and has been
dubbed the “Kapitza stiffness”. The authors’ previous work
suggests that this behavior (regarding stiffness regulation of
the lower limb) is a generalized strategy employed when
walking, and that such an oscillation measured at the pelvis
helps the torso to maintain an upright position [10].

To study the effects of the Kapitza stiffness in trunk
stabilization, an in-depth simulation study is presented here.
Using publicly available videos showing an Unimpaired Gait
Pattern, and a Parkinsonian Gait Pattern this work attempts
to show that introducing the Kapitza stiffness, i.e. a vertical
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Fig. 1: Inverted pendulum with a vertical oscillation.

oscillation at the pelvis, has the ability to reduce the rise
time of the dynamic system. This is true for a wide range of
model conditions.

II. DYNAMIC MODEL

In this work, a two degrees-of-freedom inverted pendulum
is studied. The pendulum in Figure 1 represents the subject’s
trunk and is considered to have a length l and a point mass
m. The degrees-of-freedom are: the angle of rotation of the
pendulum(ϕ) (i.e. the angle at the hip with respect to the
vertical) and the vertical oscillation of the base (Acos(Ωt +
ψ)) where A is its amplitude, Ω its frequency, and ψ its
phase. Assuming that the revolute joint is also actuated upon
with a rotational spring and damper (K and b respectively)
we find:

ml2
ϕ̈ +bϕ̇ +Kϕ =

(
mlg−mlAΩ

2 cos(Ωt +ψ)
)

sin(ϕ) (1)

where mlg can be considered a gravity induced torque.
Eq (1) is obtained from the analysis of the dynamic system
presented in Figure 1, interested readers may refer to [6],
[7], [10].

Note that (1) shows a time-varying, second order system
where the effect of gravity on the mass is countered not only
by the joint’s rotational stiffness and damping, but also by
a frequency dependent component referred to as the Kapitza
stiffness. For ease of notation, we define the Kapitza stiffness
to be:
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Kk = mlAΩ
2 cos(Ωt +ψ) (2)

for a single oscillatory input. When several frequencies of
oscillation are introduced to the system, it becomes:

Kk = ml
n

∑
i=1

AiΩ
2
i cos(Ωit +ψi) (3)

where sub-index i refers to the i-th frequency.
Finally, for a system where no oscillation is introduced,

the steady sate position of the pendulum is given by:

ϕ =
mlg
K

sin(ϕ) (4)

which may be found using a suitable iterative method.
In a classical stiffness regulation control framework, the

muscles around the joint co-contract creating a position
dependent force, which counteracts the effect of gravity
and hence maintain balance [7]. The stiffness generated
by the muscles can be modulated and modeled by, for
example, a non-linear inertial effect such as that provided
by the Kapitza’s stiffness (Kk). Modulating Kk may decrease
the metabolic energy required to maintain the proper joint
stiffness (K) trough co-contraction. Additionally, the vertical
oscillation of the pendulum could be the result of involuntary
reflexive movements, or the self-excitation of the mechanical
system.

A. Modeling trunk tilt with an inverted pendulum

A system composed of a single inverted pendulum, mod-
eling the upper part of the body starting at the base of the
pelvis, is analyzed. For this, a numerical solution to (1) is
determined and requires knowledge of two quantities: the
measurable angular deviation of the segment with respect
to the vertical (ϕ), and the joint stiffness (K) which can be
determined manually as described in the following section.

Assuming no vertical oscillation of the pendulum, the
system will reach an upright position when its joint stiffness
is large enough to compensate the gravitational pull. That is
K ≤ mlg. For convenience, this paper will express the value
of the joint stiffness to be proportional to the gravitational
pull as:

K = αmlg (5)

This work will focus on cases where the joint stiffness (K)
is not enough to bring the system to the upright position on
its own. That is, 0 ≤ α < 1. Finally, we shall assume the
damping coefficient of the system to be b = 0.1Kg.

III. METHODS

This work makes use of video recordings of an Unim-
paired individual1 and Person with Parkison’s disease2 Gaits.
Measurements of these gaits were performed using the
software suite TRACKER [11]; specifically, the vertical

1https://youtu.be/StwuCOayKBA?t=2
2https://youtu.be/B5hrxKe2nP8

(a) Unimpaired gait (b) Parkinsonian gait

Fig. 2: Trunk tilt angles for distinct walking conditions

oscillation of the hip, and the angle of the trunk (ϕ) were
recorded.

The human subjects were assumed to have a height of
1.75 m, and a body mass of 70 kg distributed according to the
information published by Winter. This means that the trunk
was modeled using an equivalent pendulum with a length of
(l = 0.1802H) and mass of (m = 0.678M) [1].

The vertical oscillation for the unimpaired gait pattern
will be henceforth referred to as UGP, while that of the
Parkinson’s subject will the referred to as PGP. Both gaits
are characterized by a complex hip vertical bobbing which
cannot be fully represented by a single pure sine wave.
In order to fully describe the hip vertical oscillation we
determine their frequency components using an fast Fourier
transform (FFT). From (2) we see that the Kapitza’s stiffness
is a function of the frequency Ω and the amplitude A of the
vertical oscillation and can be experimentally measured at the
pelvis during walking. Assuming each frequency component
as a separate oscillator, the Kapitza’s stiffness will be written
as in (3).

For UGP the maximum oscillation amplitude was under
2 cm and was found at 1.9 Hz while for PGP the maximum
oscillation amplitude is below 3 mm and was found at 2.1 Hz.

We determined the subject’s proper stiffness (K) empiri-
cally by simulating the system, with its oscillation compo-
nent (Kk) until the output angle accurately reproduced the
average angular deviation of the torso measured from the
videos for the corresponding gait. That is, while including
the the Kapitza’s stiffness (computed as in (2)) we modulated
the proper stiffness to match the equilibrium position in our
simulation to the video’s. This way, the ratio between the
proper stiffness and the gravity induced torque was found
to be α = 0.9785 for the UGP, and α = 0.89 for PGP. For
reference, the steady state value of the tilt angle was found
to be ϕ = 0.06 radians for the UGP, and ϕ = 0.82 radians
for PGP

Previous study of this model suggests that the vertical
oscillation of the system helps to stabilize it closer to the
vertical, but found that the time response varied substantially
between both subjects [10]. Specifically, the time rise for
UGP was substantially slower after the addition Kk, while
the opposite was true for PGP. In this work we wish to
further study this effect.
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Fig. 3: Simulation results for the studied conditions. The figure shows the dynamic behaviour of the system for a wide range
of α and ϕ0 values.
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To this end, a series of simulations have been performed
in which two parameters are varied: (i) the starting angular
position of the pendulum (ϕ0), and (ii) the ratio of the proper
stiffness to that induced by gravity (α). In these simulations
we focus on the effect that the parameters have on the rise
time of the system, defined as the time required for the
response to go from 10% to 90% of its steady state value. To
determine the effect of the vertical oscillation on the system,
the simulations were performed twice: once with and once
without the inclusion of the Kapitza stiffness measured for
each gait.

Results are summarized in Figure 3. The surfaces in these
figures show the computed rise time for each of the four
conditions. In the figures, diamond markers represent the
measured α and average trunk angle ϕ as obtained from
the video data respectively. That is to say, the recorded gait
corresponds to the intersection of the lines formed by these
markers. They are shown in the figure as reference to the
known gait patterns. Additionally, red-cross markers were
added to represent the steady state equilibrium position and
divide the surfaces into two sections: On the one side, the
steady state value of the system is closer to the vertical
than the initial position used for the simulation (ϕ f inal < ϕ0).
On the other side, the opposite is true. In other words, the
curve formed by these red-cross markers, approximates the
condition where ϕ f inal = ϕ0.

IV. DISCUSSION AND CONCLUSIONS

The dynamics of the Kapitza’s pendulum can be recon-
structed from Figure 3, which shows the system’s time rise
given the parameters α and ϕ0. Different strategies become
apparent for the Parkinsonian Gait (PGP) when compared to
an Unimpaired Gait (UGP).

Note that any combination of parameters where ϕ f inal =ϕ0
will not deviate from the starting position. For these values,
the system rise time should be equal to zero. The curve
shown by the red-cross markers approximates this line.

The introduction of the Kapitza stiffness creates a valley
in the time rise surface. The shape of the valley for UGP is
narrow and deep as opposed to a shallow valley in PGP. In
both cases, a flat region on the surface exists for large values
of ϕ0 and low values of α . While in this region, the subject
will appear to be slouched forward.

PGP chose the equilibrium condition in the flat region of
the time rise surface. Removing the Kapitza oscillation shows
that there is no intersection between the three curves on the
surface (Figure 3b). When the Kapitza oscillation is applied,
all three lines (measured α , ϕ , and equilibrium position)
intersect at a point showing that the system will quickly
converge to its resting state (Figure 3d and Figure 3f).

This contrasts with what is seen for the UGP condition
where no intersection exists, even after the addition of the
Kapitza oscillation. The three curves never meet at a single
point (albeit very close) which is now located in the valley
of the time rise surface (Figure 3c and Figure 3e). It could be
speculated that UGP operates in an unstable condition which

takes a long time to converge to its steady state, but could be
quickly stabilized asymptotically via a small change in α .

These results seem to point to a general rule for motion
generation: Impaired gait is controlled so as to be close to
the steady state all of the time; where the time rise of the
system is very small independently of the addition of the
oscillation (i.e. located in the flatter region of the time rise
surface). When the Kapitza oscillation is present, a wide
valley is observed, within which the time rise decreases.
Yet, the equilibrium point at which the subject operates is
only mildly affected by the effect of the oscillation. This
is accomplished by decreasing α and increasing ϕ0, keeping
the initial position close to the equilibrium. Thus, the subject
assumes a slouched posture which position and time to get
there is only mildly affected by the effect of the oscillation.

Conversely, unimpaired individuals, can freely take ad-
vantage of the dynamic aspect of motion, by modulating
both α and ϕ0 to position themselves on the steep walls
of the gorge generated by the oscillation. In doing so,
UGP operates in a meta-stable position that is theoretically
unstable but that would take a long time to diverge. In
this way, UGP takes advantage of the gravitational effect
to move the equilibrium position slightly forward and thus
use it as propulsion, knowing that the bottom of the gorge,
representing an immediate steady state position, is only a
small stiffness adjustment away.
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