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Abstract— End-diastolic (ED) and end-systolic (ES) frame
identification and landmark detection are crucial steps of
estimating right ventricle function in clinic practice. How-
ever, the complex morphology of the right ventricle and low-
quality echocardiography pose challenges to these tasks. This
study proposes a multi-task learning (MTL) framework to
simultaneously identify the right ventricle ED and ES frames
and detect anatomical landmarks for echocardiography. The
framework contains an encoder and two branches: frame-
branch and landmark-branch. The convolution neural network
(CNN) encoder is employed for extracting the shared features
of two branches. The frame-branch is built with a recurrent
neural network (RNN) to select ED and ES frames. A heatmap-
based model is used as the landmark-branch to detect the
landmarks. Furthermore, instead of directly regressing the
indexes of ED/ES frames, we form the frame identification
as a curve regression problem, which achieves considerable
performance. Experiments performed on the echocardiography
dataset of 105 patients validate the effectiveness of the proposed
approach, which leads to the average frame difference of
1.59 (±1.34) frames (ED) and 1.56 (±1.35) frames (ES) on
the frame identification task, and the percentage of correctly
predicted landmarks is 83.3%. These results demonstrated that
our method outperforms most existing methods.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause
of death globally. The evaluation of right ventricular (RV)
function plays a critical role in predicting the morbidity and
mortality of patients presenting with signs and symptoms
of cardiopulmonary disease[1]. Benefits from its painless,
noninvasive and being the only modality that able to image
heart in real-time, echocardiography is one of the most
commonly used modalities in clinic practice.

Right ventricular ejection fraction (RVEF) measures the
efficiency of the heart to pump into the pulmonary circu-
lation. Identifying the end-diastolic (ED)/end-systolic (ES)
frames in the echocardiography sequence is the first step
of quantifying RVEF. Then, localizing the anatomical land-
marks of right ventricular structures can help accurately
computing the end-diastolic volume (EDV) and end-systolic
volume (ESV) [2], [3]. However, compared to the left
ventricular (LV), it is much more difficult to assess the RV
function due to its fuzzy boundaries and complex shape.
Furthermore, the low-resolution and noise leading that ul-
trasound images have more challenges to analyze than other
medical images.

Numerous efforts have been made to automatically iden-
tify the ED/ES frames and detect anatomical landmarks on
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echocardiography. For frame identification, Kachenoura et
al. [4] proposed one of the earliest automatic methods. They
combine the intensity variation curve in the mitral region and
the correlation coefficients between the ED image and other
images to identify the ES frame. The limit of this method
is that it is not full-automatic and manual identification is
required. Recently, deep-learning based methods show great
success in medical image analysis. Kong et al. [5] integrated
CNN with an RNN for full-automatically identify ED/ES
frames from cine MRI. Then, Dezaki et al. [6] applied
the method to estimate the ES and ED frames from an
echocardiography cine series and proposed global extrema
(GE) loss to improve the prediction performance. While
methods mentioned above focus on LV, the RV quantification
is of equal importance, which not enough work has been
devoted to.

With regard to landmark detection problem, the frame-
work of heatmap regression with full convolutional networks
(FCN) [7], [8] achieved considerable results. Inspired by the
work of human pose estimation [9], Payer et al. [10] consid-
ered the structure landmark detection problem as a heatmap
regression problem, which achieved good performance on
a limited number of datasets. Building upon the approach
of [10], Zhong et al. [11] proposed a two-stage network to
predict landmarks on x-ray images, which achieved state-of-
the-art result on a public cephalometric X-ray dataset [12].

However, it is not efficient enough that designing and
training two models for frame identification and landmark
localization separately. Multi-task learning (MTL) can help
not only improving model generalization ability but also sav-
ing memory and computation resources with shared features
learning in only one network. Recently, various studies have
been documented on MTL in cardiac image analysis. Xue
et al. [13] proposed a deep MTL network to simultaneously
predict all indices of the left ventricle. Xu et al. [14] also
take the advantage of MTL to achieve view classification and
landmark detection on Abdominal Ultrasound Images, which
outperforms single-task models.

In this paper, we 1. Propose an MTL framework that can
learn to identify ED/ES frames and detect anatomical land-
marks simultaneously; 2. Design a curve regression strategy
to improve the performance of the frame identification task;
3. Leverage heatmap-based model to localize anatomical
landmarks of RV. Experiments validate the effectiveness and
accuracy of the proposed approach on both ED/ES frame
identification and landmark localization task
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Fig. 1. The architecture of the proposed Multi-task learning framework

II. METHODOLOGY

As depicted in Fig.1, the proposed MTL framework con-
tains an encoder and two branches: one for ED/ES frame
identification (frame-branch) and the other for anatomical
landmark detection (landmark-branch). The encoder is a con-
volution neural network (CNN) network learning the features
shared by two branches. Frame-branch employs a recurrent
neural network (RNN) network to predict the probability of
each frame that is an ED or ES frame. Landmark-task is a
decoder that upsamples the features to the size of the input
image and generates the landmark heatmaps.

A. Frame Identification With Synthesized Target

To extract sufficient spatial and temporal information of
echocardiography cine series, this paper follows the CNN
+ RNN framework employed in [5], [6]. The CNN encoder
learns the spatial information of each frame while an RNN
is used to extract the temporal information of the ultrasound
sequence. Between the encoder and RNN is a global average
pooling layer (GAP). The output of the frame-branch is two
vectors (one for ED and the other for ES) of length t, where
t is the number of frames in the input ultrasound sequence.
For the training target of the frame-branch, this paper use
Gaussian distribution to generate two curves which indicate
the probability of each frame being an ED or ES frame (Fig.2
bottom).

During the training phase, the loss function is a mean
squared error (MSE) loss:

Lmse =

N∑
n=1

T∑
t=1

||y(n,t) − ŷ(n,t)||
2

(1)

Where y(n,t) and ŷ(n,t) are the ground truth and the output
of tth frame in the nth sample.

While in the testing phase, the indexes of frames with a
max value of ED/ES output are computed to indicate the
predicted ED/ES frames:

Idxed = arg max
1≤t≤T

ŷ
(n,t)
ed

Idxes = arg max
1≤t≤T

ŷ(n,t)es (2)

B. Heatmap-based Landmark Detection

This paper adopts heatmap-based method to build the
landmark-branch. Rather than directly predict the coordinates
of each landmark, the heatmap-based methods make the
model output heatmaps that have the same size as the input
image. In heatmaps, a pixel with higher intensity means that
it is more likely to be the corresponding landmark. The
framework proposed in this paper uses a CNN decoder as
the landmark-branch to regressing the heatmaps (Fig.1 upper
right). Only the features of the ED/ES frame are selected and
fed to the landmark-branch. The target heatmap is generated
for each anatomical structure with the 2-D Gaussian function.

To overcome the imbalance of background pixels and
landmark pixels, we take the advantage of top-k cross-
entropy [15] to train the landmark-branch, which is defined
as:

Ltopk ce =
1

k

k∑
i=1

li(−
C∑

c=1

yc log ŷc) (3)

Where −
∑C

c=1 yc log ŷc is the cross entropy loss function
over heatmaps, li(·) compute the kth largest value.

During testing, the ED/ES frames are selected according
to the output of the frame-branch. The predicted landmark
coordinates are determined by the position of pixels that have
the maximum responses in corresponding heatmaps.

Finally, the loss function of the whole framework is
computed as:

Ltotal = (1− α)Lmse + αLtopk ce (4)

Where α is a hyper-parameter to control the weight of two
loss terms and empirically set to 0.6 in this work.
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Fig. 2. Frame-branch prediction target

III. MATERIAL AND IMPLEMENTATION DETAILS

In this study, 1019 echo cine series of 105 participants
are obtained from The First Affiliated Hospital of USTC,
and no ethical approval is required. All of the subjects are
adults with an average age of 48 and the male-to-female
ratio is approximately 0.47. Among the participants, 32
were healthy while 73 with pulmonary hypertension or other
heart diseases. The whole dataset is divided into 3 mutually
exclusive sets: 60% for training, 20% for validation, and 20%
for testing.

We employ Resnet-50 [16] as the encoder, stacked convo-
lutional blocks as heatmap decoder and bidirectional GRU
[17] as frame-task branch. Note that any other CNN/RNN
network can replace them depending on the task and de-
ployment environment. For the landmark task, there are 7
structures (RV endocardium, RV septum, tricuspid annulus,
conal septum, pulmonic valve, RV apex, septal edge) to be
predicted. The network is trained by Adam [18] optimizer
with a learning rate of 0.001 and batch size of 4. All
experiments are run on devices with CPU: Intel Xeon E5-
2695 v4 @ 2.10GHz, GPU: Nvidia Tesla V100 (16GB).

IV. EVALUATION RESULTS AND DISCUSSION

A. metrics

Following the convention, average frame difference (aFD)
is computed as the metric to evaluate the frame identification
task. Assuming that the predicted ED/ES frame index of
sequence i is Îi, and the ground-truth is Ii, then aFD is
defined as:

aFD =
1

N

N∑
i=1

|Ii − Îi| (5)

The error of landmark localization is estimated with the
point-to-point error (PE). PE evaluates the Euclidean distance
between the target coordinate xi and the predicted coordinate
x̂i of each landmark Li:

PEi = ||xi − x̂i||2 (6)

With the incompletely labeled landmarks, we also leverage
the number of identifications correct (ID) ([19]) to estimate
landmark detection performance. A landmark is predicted
correctly if the closest target landmark is correct and the

distance between the predicted point and target one is less
than 20 mm. Then the percentage of correctly identified land-
marks over all landmarks (IDrate) is used as the localization
criterion.

B. results

The experiments are tested with 5-folds cross-validation.
Tab.I shows the comparison of the proposed method and
other methods in ED/ES frame identification. It is observed
that the proposed framework achieves aFD of 1.59 (±1.34)
frames on ED identifying and 1.56 (±1.35) frames on ES
identifying, which means that our method works better on
right ventricle echocardiography.

TABLE I
EVALUATION OF ED/ES FRAME IDENTIFICATION (AFD)

Method ED (Mean ± std) ES (Mean ± std)
Kong et al. [5] 1.83 ± 1.46 1.65 ± 1.32

Dezaki et al. [6] 2.05 ± 1.54 1.79 ± 1.43
Proposed 1.59 ± 1.34 1.56 ± 1.35

Fig.3 shows the representative samples of landmark de-
tection. The statistical comparison of our landmark-branch
and other encoder-decoder network benchmarks can be seen
in Tab.II. The presented MTL framework achieves IDrate of
0.833, and the localization error of our method for ED frame
is 5.64 (±8.01) mm and for ES frame is 5.65 (±7.60) mm
that proves the effectiveness of the proposed framework.

TABLE II
LANDMARK DETECTION RESULTS

IDrate PE (Mean ± std)
ED (in mm) ES (in mm)

Unet [8] 0.829 5.97 ± 7.72 5.92 ± 7.46
Proposed (STL) 0.828 5.95 ± 7.54 5.90 ± 7.09
Proposed (MTL) 0.833 5.64 ± 8.01 5.65 ± 7.60

C. discussion

The effectiveness of the proposed method is obtained from
three aspects. Firstly, the curve regression strategy is adopted
to handle the complexity of RV for the frame identification
task. previous work ([5], [6]) synthesized a ventricle volume
variation curve as the regression target (Fig.2 upper), which
does not work well in our right ventricle dataset owing to
the complex RV anatomy. This paper generates two curves
to directly predict the probability of each frame being ED or
ES which is more appropriate in the RV situation. Secondly,
the top-k cross-entropy loss is leveraged to solve the pixel
imbalance problem. Most pixels of the target heatmaps are
background, resulting in the model being more likely to
classify a pixel as background. The top-k loss could let the
network pay more attention to the foreground pixels. Finally,
the MTL framework helps the network trained faster. Despite
two branches learn different tasks, they extract common spa-
tial and temporal information from the same input sequence.

3918



Fig. 3. Presentative samples of landmark detection on various views

With the MTL framework, the shared encoder structure can
help two branches learning common hidden features and
accelerate the convergence of the network.

V. CONCLUSIONS

This study proposes a joint learning framework that simul-
taneously achieves the automatic ED and ES frame identi-
fication and anatomical landmark localization for echocar-
diography. In the proposed method, we adopt the strategy
of curve regression to improve the performance of frame
identification. Besides, a heatmap-based model is designed
to detect the landmarks. The effectiveness of our method on
right ventricle echocardiography is validated by experiments.
In addition, the proposed framework is flexible and the com-
ponents could be replaced by any other CNN/RNN models
depending on the specific task and deploy environment.
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