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Abstract— Melanoma classification plays an important role in
skin lesion diagnosis. Nevertheless, melanoma classification is a
challenging task, due to the appearance variation of the skin
lesions, and the interference of the noises from dermoscopic
imaging. In this paper, we propose a multi-level attentive skin
lesion learning (MASLL) network to enhance melanoma clas-
sification. Specifically, we design a local learning branch with
a skin lesion localization (SLL) module to assist the network
in learning the lesion features from the region of interest.
In addition, we propose a weighted feature integration (WFI)
module to fuse the lesion information from the global and local
branches, which further enhances the feature discriminative
capability of the skin lesions. Experimental results on ISIC
2017 dataset show the effectiveness of the proposed method on
melanoma classification.

Index Terms— melanoma classification, multi-level attentive
skin lesion learning, skin lesion localization, weighted feature
integration.

I. INTRODUCTION

Melanoma is one of the most dangerous skin lesion dis-
eases because of its uncontrolled growth and high potential
to infect other parts of the body [1]–[4]. Early diagnosis
of melanoma is crucial for the timely treatment of the
skin lesions [5]–[8]. Recently, melanoma classification by
deep learning has attracted a lot of research interests. For
example, Yang et al. [9] used a convolution neural network
based on region average pooling for skin lesion classification.
Harangi [10] ensembled a set of deep learning networks to
improve the performance of skin lesion classification. Song
et al. [11] designed an end-to-end multi-task deep learning
framework for skin lesion analysis. Sultana et al. [12] built a
deep residual network with regularised fisher framework for
melanoma detection. Al et al. [13] diagnosed multiple skin
lesions via the integrated deep convolutional networks. Yu
et al. [14] exploited the lesion localization information from
the segmentation to improve the performance of melanoma
classification. Zhang et al. [15] utilized an attention residual
learning for skin lesion classification. Yu et al. [16] classified
the demorscopic images represented by the local convolu-
tional features extracted from a deep residual network. Gu
et al. [17] used a two-step progressive transfer learning and
adversarial domain adaption for skin lesion classification.
Although those deep learning based methods have achieved
promising performance for skin lesion classification, it is still
a challenging task due to the appearance variation of skin
lesion at different progression stages (Fig. 1 (a-b)), and the
noises like hairs, air bubbles and ruler-like non-skin objects
(Fig. 1 (c-d)).
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Fig. 1. Examples of melanoma cases with different appearances.

In this paper, we propose a novel multi-level attentive
skin lesion learning (MASLL) network for melanoma clas-
sification. To understand the lesion structures with different
appearances, we propose to look into skin lesions from two
branches, i.e., global branch and local branch. Specifically,
we propose a local learning branch with a skin lesion local-
ization (SLL) module to assist the network in learning lesion
features from the region of interest. By embedding SLL into
the deep feature learning process of skin lesions, we generate
a specific lesion feature representation from the salient skin
lesion regions, which further enhances the interpretability
of the proposed network on skin lesion classification. In
addition, to improve the feature parsing ability of the network
on skin lesion classification, we propose a weighted feature
integration module to fuse the lesion feature information
from the global branch and the local branch. By exploiting
the lesion feature information from two branches, we not
only enrich the feature description of the skin lesion, but also
reduce the effect of the noises on skin lesion classification.
Our proposed network is an end-to-end deep architecture
for melanoma classification. The main contributions of the
proposed method are summarized as:

(a) We propose a local learning branch with a skin lesion
localization module, which assists the network in concentrat-
ing on feature learning from the salient lesion regions.

(b) We propose a weighted feature integration module,
which enriches the feature representation of skin lesion
by fusing the feature information from global and local
branches.

(c) Experimental analysis on publicly available dataset
shows that the proposed network has achieved better
melanoma classification performance than recent melanoma
classification works.
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Fig. 2. Flowchart of the proposed multi-level attentive skin lesion learning network for melanoma classification.

II. PROPOSED METHOD

In this section, we describe the proposed skin lesion
classification in detail. Fig. 2 shows the architecture of the
proposed network. Our proposed network extracts the skin
feature information from two branches, i.e., global branch
and local branch. The global branch learns the lesion feature
from the whole dermoscopic images, while the local branch
focuses on the information from the salient lesion regions.
The weighted feature combination from both branches fur-
ther boosts the classification performance of the skin lesions.

A. Skin Lesion Localization

Localizing the skin lesion in a skin lesion image is an
important step for understanding the lesion structure. To learn
the lesion feature from the region of interest, we design a
local learning branch with a skin lesion localization module.
Given an input image as x, the feature maps after the global
branch are denoted as {gk}K

k=1 (H ×W ×K), where H, W
and K are height, width, and channel of the feature maps. To
extract the region that is crucial for skin lesion classification,
we generate an activation map M by

M =
K

∑
k=1

gk/K. (1)

Here, the activation map M indicates the importance of the
region for skin lesion classification. Then, we transfer the
activation map M to be a binary mask M

′
by

M
′
(i, j) =

{
1, i f M(i, j)> T,
0, i f M(i, j)< T, (2)

where T is a threshold that controls the size of the region
of interest. In this paper, T is set to be ∑i, j M(i, j)/(H×W ),
where (i, j) indicates the pixel location in the activation map
M. From the binary mask M

′
, we can delineate a rectangle

that contains the skin lesion. With the coordinate information
of that rectangle, we crop the salient lesion region x̂ from
the dermoscopic image.

We input the salient lesion region x̂ into the local branch
and obtain the feature maps {lk}K

k=1. In the local branch, our
network concentrates on learning the discriminative feature
from skin lesions. For dermoscopic images with noises (like
hairs, rulers, and air bubbles), our local branch can effectively
reduce the influence of those distractions, which further
improves the feature representative ability of the skin lesions.
In addition, some skin lesions in dermoscopic images are so
small that is hard for the network to extract their features
after a series of downsmalping operations (e.g., pooling). The
proposed local branch can alleviate this issue by focusing on
the lesion region for feature extraction.

B. Weighted Feature Integration

From the global and local branches of the network, we
extract the feature maps {gk}K

k=1 and {lk}K
k=1 for skin lesion

classification. To exploit the informative feature represen-
tation from {gk}K

k=1 and {lk}K
k=1, we combine the feature

information from the global and local branches by
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F = Fp[{gk}K
k=1,{lk}k

k=1], (3)

where Fp is a concatenation operation. Then, we learn a
mutual vector µ from F by

µ = Fq(F ;θq), (4)

where Fq is a linear mapping function. By learning how to
combine the lesion feature at each channel through Fq, our
network achieves an adaptive fusion of the information from
global branch {gk}K

k=1 and local branch {lk}K
k=1. θq are the

parameters of Fq. We then normalize µ as

µ̂ = sigmoid(µ). (5)

To capture the representative lesion information from two
branches while reduce the property degradation of the F , we
weight F with the guidance of the global and local feature
information µ̂ via residual attention, i.e.,

F
′
= Fs(µ̂×F,F), (6)

where Fs is a summation operation. A linear classifier is used
to classify the input dermoscopic image as melanoma or non-
melanoma. With the processes of Eqs. (3-6), the proposed
network fuses the lesion information from global and local
views, which enhances the discriminative clues from both
branches.

III. EXPERIMENT

A. Materials

To evaluate the proposed network on skin lesion classifi-
cation, we test our proposed network on the ISBI 2017 skin
lesion dataset. It contains 2000 training images, 150 valida-
tion images and 600 test images. In the training set, there
are 374 melanoma cases and 1626 non-melanoma cases. In
the validation set, there are 30 melanoma cases and 120 non-
melanoma cases. The test set includes 117 melanoma cases
and 483 non-melanoma cases. The size of those dermoscopic
images varies from 540×722 to 4499×6478.

B. Evaluation Criteria

We use four measurements to assess the performance of
skin lesion classification, i.e., area under the receiver operat-
ing characteristic curve (AUC), accuracy (ACC), sensitivity
(SEN), specificity (SPE). Metrics of ACC, SEN and SPE are
defined as:

ACC = (TP+TN)/(TP+TN+FP+FN),

SEN = TP/(TP+FN),

SPE = TN/(TN+FP),
(7)

where TP and TN denote the number of pixels correctly
classified as melanoma and non-melanoma, respectively. FP
and FN represent the number of pixels incorrectly classified
as melanoma and non-melanoma, respectively.

TABLE I
MELANOMA CLASSIFICATION OF THE PROPOSED NETWORK ON ISBI

2017 DATASET (%)

Method AUC ACC
SEN

SPE=0.95 SPE=0.9 SPE=0.85

Resnet101 84.03 85.50 46.15 51.28 59.83
Densnet121 84.49 85.16 41.03 52.99 60.68
Proposed method1 87.17 86.34 50.43 65.80 72.64
Proposed method2 87.84 87.33 55.56 68.37 76.06

Proposed method1 takes ResNet101 as the baseline network. Proposed
method2 uses DenseNet121 as the baseline network.

Fig. 3. ROC curves of different methods for melanoma classification.

C. Training Setting

The network can be implemented on the basis of sev-
eral state-of-the-art deep networks. In this paper, we take
ResNet101 [18] and DenseNet121 [19] as our baseline
networks. Both baseline networks are pre-trained on Ima-
geNet [20]. The loss function for skin lesion classification is
cross-entropy loss. We use stochastic gradient descent (SGD)
for network optimization. The network is trained in an end-
to-end manner with 100 epochs and a batch-size of 15. For
batch processing, all inputs for the global and local branches
are resized to 256 × 256. Augmentation processes including
random rotation, horizontal and vertical flips are performed
to produce more training dermoscopic images.

D. Ablation Study

We show the melanoma classification performance based
on the baseline network and the proposed network in Ta-
ble 1. Compared with the baseline models on melanoma
classification, our proposed networks enhance melanoma
classification by about 3.1%-3.4% of AUC, which displays
the effectiveness of the information combination from the
global and local branches for skin lesion classification. We
also list the sensitivity when the specificity is fixed as a high
value in Table 1. It can be observed that the proposed method
can significantly increase the sensitivity, e.g., enhancing the
sensitivity by about 15% when the specificity is 0.95. In
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TABLE II
PERFORMANCE COMPARISON OF MELANOMA CLASSIFICAITION ON ISBI

2017 DATASET (%)

Method AUC ACC SEN SPE

Zhang et al. [15] 85.90 83.70 59.00 89.60
Yang et al. [9] 84.20 83.00 60.70 88.40
Sultana et al. [12] 78.90 83.20 52.90 90.50
Al et al. [13] N.A. 81.57 75.33 80.62
Harangi [10] 85.10 85.20 40.20 71.90
Proposed method 87.84 87.33 54.70 95.24

For fair comparison, only results from the same training data are
recorded.

addition, our proposed strategy improves the skin lesion
classification on both ResNet101 and DenseNet121, which
shows the robustness of the proposed strategy on different
deep networks for skin lesion classification.

Fig. 3 shows the ROC curves of the melanoma clas-
sification based on different deep networks. From Fig. 3,
we can observe that the proposed strategy enhances the
performance of melanoma classification consistently on two
different baseline networks. Specifically, the sensitivity of the
melanoma classification is improved when the specificity at
a relatively high value, as shown in the red and green curves
in Fig. 3.

E. Comparison with Other Methods

We also compare our proposed method with other recently
published works on melanoma classification. Table 2 shows
the comparison results, where we list the melanoma classifi-
cation performance from the methods using the same training
set without external training images. From Table 2, it can be
seen that the proposed method achieves the best melanoma
classification AUC, which exemplifies the validity of the pro-
posed deep network on melanoma classification. Moreover, If
we fix the specificity as 0.90, the proposed method produces
the sensitivity of 0.6837, which is significantly higher than
the 0.5900 ([15]), and 0.5290 ([12]). In addition, compared
with other methods that use the segmentation information
to localize the skin lesions (like [9], [12]), our proposed
technique can localize lesion regions without the need of
the annotation of lesion segmentation information. Thus, our
proposed method can be directly and flexibly extended to
other biomedical classification tasks.

IV. CONCLUSION

In this paper, a multi-level attentive skin lesion learning
network is proposed to enhance melanoma classification. By
integrating lesion localization information into the feature
learning process, we boost the interpretability of the pro-
posed network on lesion feature representation. In addition,
by weighted fusing the feature information from the global
and local branches, we enrich the feature representation of
the skin lesion, which further improves the performance of

the proposed network on melanoma classification. Experi-
mental analysis validates the effectiveness of the proposed
method on skin lesion classification.
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