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Abstract— In this study, we introduce a method to perform
independent vector analysis (IVA) fusion to estimate linked
independent sources and apply to a large multimodal dataset
of over 3000 subjects in the UK Biobank study, including
structural (gray matter), diffusion (fractional anisotropy), and
functional (amplitude of low frequency fluctuations) magnetic
resonance imaging data from each subject. The approach
reveals a number of linked sources showing significant and
meaningful covariation with subject phenotypes. One such
mode shows significant linear association with age across all
three modalities. Robust age-associated reductions in gray
matter density were observed in thalamus, caudate, and insular
regions, as well as visual and cingulate regions, with covarying
reductions of fractional anisotropy in the periventricular region,
in addition to reductions in amplitude of low frequency fluctu-
ations in visual and parietal regions. Another mode identified
multimodal patterns that differentiated subjects in their time-to-
recall during a prospective memory test. In sum, the proposed
IVA-based approach provides a flexible, interpretable, and
powerful approach for revealing links between multimodal
neuroimaging data.

I. INTRODUCTION

Standard neuroimaging research practice involves collec-
tion of multimodal magnetic resonance imaging (MRI) data
on every individual. Each modality provides rich, unique
information about brain structure and/or function [1], [2].
Although separate analysis of each data modality can provide
important insights into the structural or functional integrity
of the brain, multimodal fusion analyses provide insights
into cross-modal (joint) associations that can lend important
missing links in brain development and disease [3].

While large scale neuroimaging datasets (1000+ subjects,
with multimodal data acquired on the same subjects) in-
crease our ability to recognize robust biomarkers for brain
health and disorder, the relationship between modalities is
often complex and unknown. Because of this, data-driven
approaches play a key role in discovery of relationships
between brain function and structure, which may not co-
occur at the same spatial regions and may covary among
subjects in complex ways [4]. Based on the marked success
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of independent component analysis (ICA) for exploratory
analysis of brain imaging data, a number of approaches have
attempted to capture these relationships leveraging indepen-
dence. Rarely, however, they were able to directly estimate
such covariation, typically resorting to an amalgamation of
indirect methods [5]. Independent vector analysis (IVA) [6],
a multidataset extension of independent component analysis
(ICA), provides a natural and extendable way to directly
link multivariate brain imaging data together. While separate
unimodal ICAs can only identify modality-specific sources,
IVA identifies sets of linked sources across modalities, which
are called source component vectors (SCV).

Largely inspired by hybrid experiments in [7], this work
demonstrates an application of IVA for multimodal fusion,
combining unimodal features from structural MRI (sMRI),
diffusion MRI (dMRI), and functional MRI (fMRI) data
from a large UK Biobank sample. Specifically, we iden-
tify corresponding linked sources from gray matter (GM)
probabilistic segmentation maps from sMRI data, fractional
anisotropy (FA) maps from dMRI data, and amplitude of low
frequency fluctuations (ALFF) maps from fMRI data. GM
maps summarize variations in gray matter density. FA maps
capture variation in the extent of directional diffusion within
regional white matter. ALFF maps summarize the strength of
local functional connectivity and the ability of brain regions
to communicate with distant regions. Each SCV estimated
with IVA represents a linked mode of shared variability
across these modalities, providing a rich linked feature set
for joint interpretation. Furthermore, we investigate potential
associations between the extracted SCVs and non-imaging
subject phenotypes. We show that the multimodal IVA fusion
model can extract meaningful linked sources with statis-
tically significant linear associations with the non-imaging
phenotypes.

In the following, Section II describes the data, prepro-
cessing, and methodology utilized in this work. Section III
presents our results, which are further discussed in Section
IV before presenting our final conclusions.

II. METHODS

A. Data

In this work, we use imaging data from a subset of 3497
subjects participating in the UK Biobank study, a prospective
epidemiological study with a large imaging database. Specif-
ically, we utilize multivariate features [8] from structural
MRI (sMRI), diffusion MRI (dMRI) and resting functional
MRI (rfMRI) data extracted from each subject. All data was
collected in one of the three participating locations in the
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United Kingdom. All participants provided informed consent
from their respective institutional review boards.

T1-weighted structural MRI images were acquired us-
ing a 3D MPRAGE sequence at 1mm3 isotropic sagittal
slices with acquisition parameters: 208x256x256 matrix,
R=2, TI/TR=880/2000 ms. Diffusion MRI images were ac-
quired using a standard Stejskal-Tanner spin-echo sequence
at 2mm3 isotropic resolution at two different b values
(b = 1,000 and 2,000 s/mm2) and 50 distinct diffusion-
encoding directions each acquired with a multi-band (MB)
factor of 3. Resting functional MRI were acquired axially
at 2.4mm3 resolution while the subjects fixated at a cross
with the following acquisition parameters: 88x88x64 matrix,
TE/TR=39/735ms, MB=8, R=1, flip angle 52°. A pair of spin
echo scans of opposite phase encoding direction in the same
imaging resolution as rFMRI scans were acquired to estimate
and correct distortions in rFMRI echo-planar images, and a
single band high resolution reference image was acquired at
the start of the rFMRI scan to ensure good realignment and
normalization.

B. Preprocessing

We processed each of the three imaging data modali-
ties to obtain GM, FA, and ALFF feature maps, which
were then used for multimodal fusion analysis. Besides
summarizing information into features, the preprocessing
also promotes dimensionality reduction and denoising, both
of which facilitate latter analyses. Specifically, the sMRI
images underwent segmentation and normalization to MNI
space using the SPM12 toolbox, yielding gray matter (GM),
white matter (WM), and cerebro-spinal fluid (CSF) tissue
probability maps. The normalized GM segmentations were
spatially smoothed using a 10mm FWHM Gaussian filter.
The smoothed images were resampled to 3mm3. We defined
a group mask to restrict the analysis to GM voxels as follows.
First, an average GM segmentation map from all subjects
was obtained from normalized segmentation images at 1mm3

resolution. This map was binarized at a 0.2 threshold and
resampled to 3mm3 resolution, which resulted in 44318 in-
brain voxels.

For dMRI data, we used the FA maps provided by the
UK Biobank consortium. The preprocessing steps that raw
dMRI images underwent are thoroughly described in [9].
The FA maps were then spatially smoothed using a 6mm
FWHM Gaussian filter and resampled to 3mm3 voxels.
For dMRI data, we computed a group mask similar to the
approach described above for sMRI data. However, the group
average WM segmentation was binarized at a threshold of
0.4, resulting in 18684 in-brain voxels in the group mask.

Lastly, we used distortion corrected, FIX-denoised [10],
normalized rfMRI data provided by the UK Biobank data
resource. We computed amplitude of low frequency fluc-
tuation (ALFF) maps, defined as the area under the low
frequency band [0.01-0.08 Hz] power spectrum of each voxel
time course. We then obtained mean scaled ALFF maps
(mALFF), ALFF maps divided by the global mean ALFF
value, as this scaling has been shown to result in greater

test-retest reliability of ALFF maps [11]. The mALFF maps
were smoothed using a 6mm FWHM Gaussian filter and
resampled to 3mm isotropic voxels. We used the same group
mask learned from GM features for mALFF maps in the
subsequent fusion analysis.

C. Multimodal IVA (MMIVA) fusion model

Here we present a general IVA approach for direct analysis
of heterogeneous multimodal data. As mentioned earlier, IVA
is a natural extension of ICA. While ICA operates on a single
dataset to obtain statistically independent source signals via
estimation of one linear unmixing matrix, IVA performs joint
estimation of many unmixing matrices simultaneously across
multiple datasets [12].

Briefly, ICA is a blind source separation model that
assumes linear mixing of C statistically independent sources
s, yielding the observed data x:

x(n) = As(n), 1 ≤ n ≤ N, x(n), s(n) ∈ RC , (1)

where A is the mixing matrix, and N is the number of ob-
servations (here, the number of subjects). The ICA algorithm
seeks to identify the sources ŝ(n) = Wx(n) by estimating
an unmixing matrix W, according to certain properties of the
sources such as higher-order statistics and non-Gaussianity.
Typical ICA algorithms minimize the mutual information
defined as:

IICA(W) =

C∑
i=1

H(ŝi)− log|detW|, (2)

where H(ŝi) is the differential entropy, given by H(ŝi) =
−E{log pŝi(w>

i x)}.
IVA extends the ICA model to multiple (K) datasets,

assuming a linear mixture of C independent sources for each
dataset:

x[k](n) = A[k]s[k](n), 1 ≤ k ≤ K, 1 ≤ n ≤ N, (3)

additionally assuming statistical dependence (i.e., linkage)
of corresponding sources. This collection of linked sources
is defined as the source component vector (SCV) si(n) =

[s
[1]
i (n), s

[2]
i (n), . . . , s

[k]
i (n)]> ∈ RK . Here, K = 3, such

that each SCV spans across modalities.
Solving the IVA problem comes from minimizing the

following mutual information:

IIVA(W) =

C∑
i=1

(
K∑

k=1

H(ŝ
[k]
i )− I(ŝi)

)
−

K∑
k=1

log|det(W[k])|

(4)
The second term I(ŝi) in the equation above is mutual in-
formation accounting for dependence among sources in each
SCV. Altogether, the terms in big parentheses correspond
to the joint entropy of an SCV H(ŝi), simply indicating
that IVA identifies independence among SCVs while taking
into account the dependence across datasets. See [12] for a
general discussion on ICA and IVA algorithms and [13], [14]
for their application to data fusion (particularly our choice
of transposed IVA). See [7] for details on the multidataset
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independent subspace analysis (MISA) implementation we
utilized to estimate the IVA model in this work.

We performed MMIVA fusion of the GM, mALFF, and
FA features by treating each modality as one of the K
datasets in the IVA model above. Each subject’s feature set
was z-scored per modality and then reduced to 20 principal
directions using multimodal group principal component anal-
ysis (MGPCA). Unlike standard PCA that finds orthogonal
directions of maximal variation for each modality separately,
MGPCA finds directions of maximal common variation, i.e.,
eigenvectors are computed based on the average of the
scaled covariance matrices (Σ[k]) of all three modalities. The
scaling factor used is trace(Σ[k])/N , which is the ratio of
the variance in the modality to the number of observations
(here, subjects). The MGPCA-reduced data then underwent
an ICA estimation using the Infomax objective [15] to obtain
20 common independent sources.

We improved upon the Infomax estimation by configuring
and running MISA as an ICA model [7], in which case
it assumes source distributions to follow a univariate Kotz
distribution. The final combined MGPCA+ICA estimates of
W[k] were then utilized as projection matrices for each
modality. The resulting data were analyzed by the MMIVA
model after reconfiguring and running MISA as an IVA
model to obtain the final joint decomposition. As discussed
earlier, MMIVA accounts for dependence within correspond-
ing sources across modalities. For both MISA and MMIVA
models, the source distributions are assumed to take a multi-
variate Kotz distribution, as this has been shown to generalize
well across multivariate Gaussian, multivariate Laplace, and
multivariate power exponential source distributions [16]. All
methods have been implemented using the MISA toolbox [7].

D. Statistics

UK Biobank provides extensive phenotype information for
each subject including age, sex, lifestyle measures, cognitive
scores, etc. We used a subset of the subject measures (SM)
reported in [17] to identify associations between the subject
demographics and the MMIVA sources obtained from our
decomposition. We computed a multivariate MANCOVA
model (ŝ[k] ∼ SM + e) using the MANCOVAN toolbox,
which implements multivariate stepwise regression, to iden-
tify associations between subject demographics and MMIVA
sources for each modality separately.

Following the approach in [18], we dropped subject scores
with more than 4% missing data. This resulted in 2907
subject scores out of 3497 for MANCOVAN analysis. Of 64
SMs, we dropped 10 columns which had extreme values. Ex-
treme values are identified in 2 steps. First sum of square of
absolute median deviations (ssqamdn) for each SM is com-
puted. If there is any max(ssqamdn) >100*mean(ssqmdn),
then the SM has subjects with extreme outliers which can in-
fluence statistical analysis and so were dropped. This resulted
in 54 phenotypes that include age, sex, fluid intelligence, a
set of phenotypes covering amount and duration of physical
activity, frequency of alcohol intake, and cognitive test scores
(see [17] for details).

For the measures that were retained, any missing values
were imputed with K-Nearest Neighborhood (MATLAB’s
knnimpute) method. Stepwise regression approach was used
to retain only significant terms (SMsig) at each step, using
α < 0.01. Univariate tests (ŝ

[k]
i ∼ SMsig + e) were

performed to identify significant SCVs and corrected for
multiple comparisons at Bonferroni threshold (0.05/20 for
20 sources). In addition to the SMs, the following nuisance
covariates were added to the design matrix:

1) sMRI: correlation of warped subject segmentation map
to mean segmentation map (rSNsMRI ),

2) dMRI: correlation of warped subject FA map to mean
FA map (rSNsMRI ),

3) ALFF: correlation of warped subject ALFF map to
mean ALFF map (rSNALFF ),

4) and mean framewise displacement (mFD) computed
from rigid body movement estimates from resting
fMRI scan realignment step.

Any variable with fewer than 8 levels were modeled as
categorical variables and rest were modeled as continuous
variables. Only age by sex interaction was considered.

III. RESULTS

The MANCOVA analysis revealed several SCVs showing
significant effects of age, sex across the three modalities
on several SCVs. Figure 1 shows the source (component
8) most significantly associated with age, along with the
corresponding mixing weights (spatial maps).
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Fig. 1. The sources corresponding to component 8 for each of the three
modalities are plotted as scatter plot. Each point represents a subject color-
coded by age. The component maps correspond to the mixing weights of
the source for each modality.

Component 1 showed the most significant sex effects, as
depicted in Figure 2. The interaction term age by sex was
only weakly significant for a couple of components and did
not survive multiple comparison correction for all of the three
modalities for any component.

Among the remaining phenotypes, time-to-answer (TTA)
in a prospective memory test showed linear association with
each of the three modalities for component 3, as shown in
Figure 3. As seen in the figure, subjects with faster responses
have higher component values and vice versa.

Few components show significant variation with nuisance
variables (subject movement and spatial normalization sum-
maries), which are not shown here.
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Fig. 2. The sources corresponding to component 1 for each of the three
modalities, by sex. The component maps shown, correspond to the mixing
weights for each modality.
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Fig. 3. The sources corresponding to component 3 for each of the
three modalities, plotted as scatter plot. Each point represents a subject
color-coded by time-to-answer (TTA) in a prospective memory test. The
component maps correspond to the mixing weights of the source for each
modality. The source intensities are also plotted separately for each modality
to show consistent shift in source distributions of fast and slow responders
in prospective memory task.

IV. DISCUSSION

In this work, we showed that multimodal IVA, initialized
with multimodal group principal components estimated using
data from all modalities, can help extract independent sub-
spaces with strong multimodal linkage and that also show
significant covariation with subject phenotypes.

Age associated decline (hot areas in the weight maps of
sMRI component 8) in gray matter density was primarily
seen in caudate, thalamus, insular regions, anterior and
posterior cingulate cortex, and lingual gyrus, consistent with
earlier findings [19]. Subject weights corresponding to dMRI
modality suggest reductions in fractional anisotropy values
with age in periventricular regions including superior and
posterior thalamic radiation. ALFF maps corresponding to
component 8 suggest reductions in parietal and visual regions
of the brain that covary with structural changes.

MMIVA Component 1 showed the most significant sex
differences for all 3 modalities. In both sexes, linear covari-
ation with similar trajectory of decline with age in ALFF in
parietal cortex, cerebellar regions in gray matter density, and
fractional anisotropy in parietal cortico-pontine tracts was
observed.

Variability in reaction times to prospective memory tests

was captured in component 3 with subjects who exhibited
faster reaction times showing greater gray matter densities
in cerebellum (Crus 1), higher ALFF values in the areas
corresponding to dorsal visual stream, and higher FA values
in the cortico-spinal tract.

In summary, we demonstrate the ability of multimodal
independent vector analysis to directly extract linked multi-
modal independent modes of subject variations that also cap-
ture different aspects of pheonotypical information. Further
investigations are needed to verify if the observed covariation
patterns across the different modalities are driven by common
causes and replicate in patient populations.
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