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Abstract— Individuals with obesity have larger amounts of
visceral (VAT) and subcutaneous adipose tissue (SAT) in their
body, increasing the risk for cardiometabolic diseases. The
reference standard to quantify SAT and VAT uses manual
annotations of magnetic resonance images (MRI), which re-
quires expert knowledge and is time-consuming. Although there
have been studies investigating deep learning-based methods for
automated SAT and VAT segmentation, the performance for
VAT remains suboptimal (Dice scores of 0.43 to 0.89). Previous
work had key limitations of not fully considering the multi-
contrast information from MRI and the 3D anatomical context,
which are critical for addressing the complex spatially varying
structure of VAT. An additional challenge is the imbalance
between the number and distribution of pixels representing
SAT/VAT. This work proposes a network based on 3D U-
Net that utilizes the full field-of-view volumetric T1-weighted,
water, and fat images from dual-echo Dixon MRI as the
multi-channel input to automatically segment SAT and VAT in
adults with overweight/obesity. In addition, this work extends
the 3D U-Net to a new Attention-based Competitive Dense
3D U-Net (ACD 3D U-Net) trained with a class frequency-
balancing Dice loss (FBDL). In an initial testing dataset, the
proposed 3D U-Net and ACD 3D U-Net with FBDL achieved
3D Dice scores of (mean ± standard deviation) 0.99±0.01 and
0.99±0.01 for SAT, and 0.95±0.04 and 0.96±0.04 for VAT,
respectively, compared to manual annotations. The proposed
3D networks had rapid inference time (<60 ms/slice) and can
enable automated segmentation of SAT and VAT.

Clinical relevance— This work developed 3D neural networks
to automatically, accurately, and rapidly segment visceral and
subcutaneous adipose tissue on MRI, which can help to char-
acterize the risk for cardiometabolic diseases such as diabetes,
elevated glucose levels, and hypertension.

I. INTRODUCTION

As increased adipose tissue (AT) is highly correlated with
escalating incidences of obesity [1] and cardiometabolic
diseases [2], the need for a rapid and accurate technique
to quantify body composition is clear. Magnetic resonance
imaging (MRI) can quantify body composition, notably
visceral (VAT) and subcutaneous adipose tissue (SAT), non-
invasively and without ionizing radiation. VAT and SAT are
potential imaging biomarkers for detecting future risks for
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cardiometabolic diseases [2], [3]. In particular, VAT plays a
key role in metabolic activity via secretion of inflammatory
markers [4]. Currently, the reference standard to quantify
SAT and VAT is manual annotations [3], [5], which require
expert knowledge, may have inter-observer variability, is
time-consuming (especially for VAT), and challenging for
large-scale and longitudinal studies.

Machine learning approaches have been proposed to seg-
ment SAT and VAT [6] [7] [8]. Recently, deep learning-based
methods have also been proposed, using architectures such
as 2-dimensional (2D) U-Net [9], [10] , 2D Dense U-Net
[11], 2.5D competitive Dense U-Net (FatSegNet) [12], 3D
V-Net [10], and 3D Densely Connected (DC) Net [13]. These
deep learning studies reported excellent performance for SAT
segmentation (Dice scores of 0.97 to 0.99). However, the per-
formance for VAT remains suboptimal (Dice scores of 0.43 to
0.89) due to the complex spatially varying and disconnected
nature of VAT. These previous studies had key limitations
of: (1) using only T1-weighted (T1W) images, or only fat
and water images, but not combining them to fully exploit
the multi-contrast information from MRI, and/or (2) using
only 2D slices or cropped 3D image patches, which do not
capture the 3D anatomical context and global associations
across the full imaging volume. An additional challenge is
the imbalance between the number and distribution of pixels
representing SAT/VAT.

In this work, our first objective is to develop a network
based on 3D U-Net that combines multi-contrast images
(T1W, water, and fat images) as the input and exploits
global associations across the entire field-of-view (FOV) for
volumetric dual-echo Dixon MRI data. Second, we extend
3D U-Net and propose a new Attention-based Competitive
Dense 3D U-Net trained with a class frequency-balancing,
boundary-emphasizing Dice loss to achieve rapid and accu-
rate automated segmentation of SAT and VAT.

II. METHODS

A. Datasets

The Habitual Diet and Avocado Trial (HAT) is an ongoing
longitudinal multisite clinical trial involving four universities.
All participants underwent an abdominal 3T MRI exam,
without injection of contrast agents. An axial 3D dual-echo
Dixon sequence was acquired in a single breath-hold to
measure SAT and VAT. T1W images at the out-of-phase and
in-phase echoes (TEOP / TEIP = 1.23 / 2.46 ms) from Dixon
MRI were used to calculate fat and water images [14].
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Fig. 1: The proposed Attention-based Competitive Dense 3D U-Net (ACD 3D U-Net).

Slice coverage spanned from 4 cm above the liver dome
to 7 cm below the top of the iliac crest. Additional pa-
rameters were: matrix size of 192×192, 400-mm in-plane
FOV, 96 slices, 3.5-mm slice thickness, TR = 5 ms, and
flip angle = 9o. Semi-automated manual annotation was
performed by trained researchers in 51 slices of the Dixon fat
images using SliceOmatic (TomoVision, Montreal, Canada)
for segmentation with a watershed algorithm and ImageJ
(National Institute of Health) was used for thresholding using
intermodes. The number of slices was interpolated to 64 to be
compatible with the filter sizes in the 3D networks. The same
interpolated slices were used in 2D networks to facilitate
comparisons.

Mean±SD BMI (kg/m2) Sex
Overall (n=164) 31.89±4.45 68F, 19M

Train./Val. (n=146) 31.86±4.56 60F, 18M
Testing (n=18) 32.07±3.71 8F, 1M

TABLE I: Dataset characteristics. The data were stratified to
yield similar distributions of body mass index (BMI) for the
training/validation and testing datasets. For subjects with 2
exams, both exams were assigned to either training/validation
or testing. n indicates number of exams. See text for details.

This work included the first 87 participants in the HAT
study with completed annotations. Of these 87 participants,
77 had two MRI exams performed six months apart. The
total number of MRI exams was 164. The dataset was
split into separate training (90%; n=146 exams [68 subjects
with 2 exams, 10 subjects with 1 exam]) and testing (10%;
n=18 exams from 9 subjects) sets, with similar body mass
index (BMI) distributions for the subjects (Table I). Eighteen
exams were randomly selected from the training set and set
aside as a validation set for hyperparameter tuning. Once
the hyperparameters were selected using a grid search, the

training and validation sets were combined for final training.
The two exams for each subject often had notable differences
in SAT/VAT and effectively augmented the dataset, thus we
did not perform any additional augmentation.

B. Neural Networks

To take advantage of multi-contrast MRI information,
we combined the T1W TEOP, water, and fat images from
dual-echo Dixon MRI as the multi-channel input and then
generated output segmentation masks for SAT, VAT, and
”other” pixels (Figure 1A).

We first implemented 2D U-Net with 4 encoding, 4
decoding, and 1 bottom layer(s) as the baseline network
[9]–[12]. Next, we developed a network based on 3D U-
Net [15] with multi-contrast full-FOV volumetric MRI as the
input. Our implementation of 3D U-Net used 3 encoding, 3
decoding, and 1 bottom layer(s) [15]. The 2D U-Net and 3D
U-Net were trained with weighted Dice loss (WDL) with
class weights, ωl (N : number of pixels; l: classes; rln and
pln: reference and output segmented pixel n, respectively)
[16], where the class weights were calculated as ωl =
1/(

∑N
n=1 rln)

2

WDL = 1− 2

∑3
l=1 ωl

∑
n rlnpln∑3

l=1 ωl

∑
n rln + pln

(1)

We extended 3D U-Net to a new Attention-based Compet-
itive Dense 3D U-Net (ACD 3D U-Net) (Figure 1A). Each
purple box represents a competitive densely connected block,
shown in Figure 1B with growth rate k = 2. Competitive
dense blocks are more computationally efficient [17] than
the popular densely connected blocks [18]. At the bottom
layer, we added convolutional attention blocks (blue blocks)
to consider the more informative spatial and channel features
(Figure 1C) [19]. In order to account for the complex
spatially varying and disconnected VAT, we trained the ACD
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3D U-Net using a novel loss function. We used logistic
weights for ωl in WDL, where the first term considers the
class frequency imbalance and the second term emphasizes
the boundaries (I: indicator function, f : class frequencies,
∇: gradient). ω0 = 2median(f)

fmin
gives higher priority to

boundaries. We refer to this new loss function as frequency-
balancing boundary-emphasizing Dice loss (FBDL).

ωl =

N∑
n=1

I(pln == l)
median(f)

fl
+ ω0I(|∇pln| > 0) (2)

The 3D networks are subject-based (i.e., use the full volu-
metric MRI dataset as input), while the 2D U-Net is a slice-
by-slice segmentation method. All neural networks were
implemented in PyTorch 1.8.0 and trained on a NVIDIA
Quadro RTX 8000 with 48 GB RAM.

C. Evaluations

The segmentation performance was assessed with respect
to the reference manual annotations using an overlap-based
metric (3D Dice score, range 0 to 1), and a probability-
based metric (Cohen’s Kappa coefficient, κ, range 0 to 1)
to account for different image features. The Dice score is a
standard metric for evaluating medical image segmentation
and is sensitive to boundary errors [20]. κ is a measure
of agreement between two samples, which is robust since
it accounts for the agreement caused by chance [20]. The
number of false negative (FN) and false positive (FP) pixels
(SAT and VAT combined) were normalized to the total
number of SAT and VAT pixels in the manual annotations
(range 0 to 100%). All evaluation metrics were calculated per
exam in the testing set and reported as mean and standard
deviation (SD) across all exams in the testing set.

III. RESULTS

The inference time, training time, and number of trainable
parameters are listed in Table II. The inference times for all
networks were comparable. As expected, 2D U-Net had more
trainable parameters and the longest training duration due to
its deeper structure than its 3D counterparts. ACD 3D U-Net
had fewer trainable parameters than 3D U-Net.

2D U-Net 3D U-Net ACD 3D U-Net
Inf. time 36 ms/slice 44 ms/slice 55 ms/slice

Train. time 9.8 hr 5.1 hr 5.8 hr
Train. param. 31043651 22403011 20798835

TABLE II: Characteristics of the neural networks. Inf.:
inference. Train.: training. Param.: parameters.

Figure 2 shows inputs (T1W TEOP, fat, and water images),
manual annotations, and output segmentation masks from the
neural networks in 2 representative subjects. The 2D U-Net
yielded the poorest SAT and VAT segmentation performance
for these 2 subjects. For 3D U-Net, the 3D Dice score and
κ for subject 1 were 0.95 and 0.94, respectively. ACD 3D
U-Net achieved higher 3D Dice score = 0.98 and higher κ
= 0.97. For subject 2, ACD 3D U-Net again achieved higher
3D Dice and κ scores than 3D U-Net (3D Dice scores: 0.98

vs 0.96; κ: 0.97 vs. 0.96). False positives and false negatives
are illustrated in Figure 3 for chosen slices from the same
subjects. For both subjects, 2D U-Net resulted in the greatest
number of false positive and false negative pixels. The ACD
3D U-Net results had the smallest number of false positives
and comparable number of false negatives as 3D U-Net for
the chosen slices from both subjects.

Table III reports the overall segmentation performance
using 3D Dice score, κ, FN and FP. 2D U-Net yielded the
lowest segmentation performance. Both proposed 3D neural
networks achieved excellent segmentation performance for
SAT and VAT, as evidenced by the high mean 3D Dice and
κ scores and low mean FN and FP across all exams in the
testing set. The ACD 3D U-Net outperformed 3D U-Net for
VAT segmentation.

Fig. 2: Input images (T1W TEOP, fat, and water), manual
annotations, and output SAT (white) and VAT (gray) masks
from 2D U-Net, 3D U-Net, and ACD 3D U-Net in 2
representative subjects. For subject 1, 3D Dice scores for
VAT from 2D U-Net, 3D U-Net and ACD 3D U-Net were
(0.71, 0.95, and 0.98), respectively. The κ for VAT were:
0.67 (2D U-Net), 0.94 (3D U-Net) and 0.97 (ACD 3D U-
Net). The 3D Dice scores for VAT in subject 2 were higher
for the ACD 3D U-Net (2D U-Net: 0.81, 3D U-Net: 0.96,
ACD 3D U-Net: 0.98). κ for VAT in subject 2 were: 0.79
(2D U-Net), 0.96 (3D U-Net), and 0.97 (ACD 3D U-Net).

IV. DISCUSSION
We developed 3D neural networks for rapid and accurate

automated segmentation of VAT and SAT. For both of the
proposed 3D networks, we used multi-contrast MRI data
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Fig. 3: The false positive (orange) and false negative (green)
pixels from 2D U-Net, 3D U-Net, and ACD 3D U-Net,
overlaid on fat images in representative slices. The proposed
3D U-Net and ACD 3D U-Net reduced false negatives and
false positives compared to 2D U-Net. The ACD 3D U-Net
achieved the smallest number of false positives.

from a single Dixon acquisition (T1W TEOP, fat, and water
images) and exploited the full-FOV volumetric information.
This allowed us to successfully capture and address the spa-
tially varying and disconnected nature of VAT. Our new ACD
3D U-Net utilized attention mechanisms in addition to com-
petitive dense blocks and a frequency-balancing boundary-
emphasizing Dice loss to further improve the segmentation
of VAT without major differences in training/inference time.
Both the proposed 3D U-Net and ACD 3D U-Net resulted
in superior segmentation performance for SAT and VAT
compared to 2D U-Net, which was not able to capture
the through-plane associations for VAT. The proposed 3D
networks yielded excellent segmentation performance for
SAT, and importantly, VAT. In particular, ACD 3D U-Net
achieved higher 3D Dice scores and κ, and comparable
number of false positives and false negatives, for VAT
segmentation when compared to 3D U-Net. Having fewer
trainable parameters with higher performance levels could
mean that the proposed ACD 3D U-Net generalizes the
features better than the 3D U-Net and 2D U-Net.

DL-based approaches can achieve rapid inference time
(e.g., ms/slice) [10], [12], [13] and can potentially make
AT segmentation and body composition analysis a practical
tool in research and clinical settings. A recently proposed
2.5D FatSegNet was trained with T1W images at 2 echo
times (TEOP, TEIP) from 32 subjects and improved VAT
segmentation compared to 2D U-Net (mean 2D Dice scores:
0.850 vs. 0.837) [12] in a cross-validation set of 6 subjects.
This network addressed the complex structure of VAT by
using a composite Dice and logistic loss function. However,
this 2.5D network required training in 3 different image plane

3D Dice (mean±SD)
SAT VAT

2D U-Net+WDL 0.96± 0.02 0.77± 0.06
3D U-Net+WDL 0.99± 0.01 0.95± 0.04

ACD 3D U-Net+FBDL 0.99± 0.01 0.96± 0.04
κ (mean±SD)

SAT VAT
2D U-Net+WDL 0.95± 0.03 0.74± 0.07
3D U-Net+WDL 0.98± 0.01 0.94± 0.04

ACD 3D U-Net+FBDL 0.99± 0.01 0.96± 0.04
False neg./pos. (mean±SD)

FN FP
2D U-Net+WDL 9.4%± 4.1% 12.0%± 5.1%
3D U-Net+WDL 1.5%± 2.0% 1.3%± 1.9%

ACD 3D U-Net+FBDL 1.5%± 2.4% 1.2%± 1.7%

TABLE III: Segmentation performance metrics 3D Dice
scores, κ, false negatives (FN), and false positives (FP)
reported as mean ± standard deviation (SD) across all 18
exams in the testing set. Note the major improvements of 3D
networks compared to 2D U-Net. ACD 3D U-Net achieved
the highest mean 3D Dice scores and κ and lowest mean FN
and FP.

orientations separately, and then used an aggregation network
to combine outputs from all orientations, which increased
the complexity and the training time. Another recent study
focused on automated AT segmentation based on 3D U-Net
[13] with 3D patches (32×32×32) of Dixon water and fat
images as the inputs. This study enhanced the 3D U-Net
by incorporating attention mechanisms and standard densely
connected block, and then trained the 3D network in 210
subjects using a composite Dice and logistic loss function.
The 3D Dice scores for VAT segmentation in a testing set of
60 subjects were 0.43±0.17 for patch-based 3D U-Net and
0.89±0.05 for the proposed patch-based 3D network.

Compared to these representative previous studies, our
ACD 3D U-Net had distinct advantages of: (1) using T1W
images (TEOP) combined with fat and water images as
inputs to take advantage of multi-contrast MRI information,
(2) using full-FOV volumetric images, instead of limited
slices (2.5D) or 3D patches, to exploit 3D context and
global features for resolving VAT, and (3) using a novel
loss function to address the class imbalance of VAT/SAT
pixels. The VAT segmentation performance of ACD 3D U-
Net (3D Dice scores of 0.96±0.04) in an initial testing set
demonstrates its potential to advance the state-of-the-art.

Our study had limitations. First, there is relatively high
memory requirement for the proposed 3D U-Net and ACD
3D U-Net (∼31 GB) as they require tensor multiplications
with larger dimensions due to full-FOV volumetric inputs.
The increasing availability of high-performance computing
hardware partially alleviates this challenge. Nevertheless, fu-
ture research can compare trade-offs regarding segmentation
performance and memory requirements for different patch-
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based and full-FOV models, and investigate strategies to
combine the relative advantages. Second, we had limited
sample size in our training/testing sets. While the size of our
training dataset is already comparable to previous studies on
VAT/SAT segmentation, having a larger number of subjects
in the testing dataset can strengthen the evaluation and
enable statistical analyses. We will include more subjects
and exams from the HAT study as more data becomes
available. Third, for the comparison between 3D U-Net and
ACD 3D U-Net, we have not yet performed a detailed
ablation study to investigate the relative contributions of
each component (competitive dense connections, attention
mechanism, FBDL) in our networks. This will be the topic of
further investigation. Fourth, we have not performed head-to-
head comparisons of our proposed networks with other 2.5D
or 3D networks proposed in recent studies. We acknowledge
that the differences in our performance compared to previous
work could be due to differences in the underlying subject
characteristics and evaluation methods.

V. CONCLUSIONS
Taking advantage of full-FOV volumetric multi-contrast

MR images, we demonstrated the superior performance of
3D U-Net to segment SAT/VAT compared to the baseline
2D U-Net. Then, we extended our work in 3D U-Net and
proposed a new Attention-based Competitive Dense 3D U-
Net (ACD 3D U-Net) and a novel class frequency-balancing
boundary emphasizing Dice loss function. 3D U-Net and
ADC 3D U-Net yielded excellent SAT and VAT segmentation
performance. ADC 3D U-Net achieved higher mean 3D Dice
scores (0.96 for VAT; 0.99 for SAT) and κ (0.96 for VAT;
0.99 for SAT) than the other tested networks. Our proposed
ADC 3D U-Net could be used as an automated tool to rapidly
(<60 ms per slice) analyze body composition in adults with
overweight/obesity.
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