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Abstract— The development of high performance brain ma-
chine interfaces (BMIs) requires scaling recording channel
count to enable simultaneous recording from large popula-
tions of neurons. Unfortunately, proposed implantable neural
interfaces have power requirements that scale linearly with
channel count. To facilitate the design of interfaces with reduced
power requirements, we propose and evaluate an unsupervised-
learning-based compressed sensing strategy. This strategy sug-
gests novel neural interface architectures which compress neu-
ral data by methodically combining channels of spiking activity.
We develop an entropy-based compression strategy that models
the population of neurons as being generated from a lower
dimensional set of latent variables and aims to minimize the loss
of information in the latent variables due to compression. We
evaluate compressed features by inferring the latent variables
from these features and measuring the accuracy with which
the activity of held out neurons and arm movements can be
estimated. We apply these methods to different cortical regions
(PMd and M1) and compare the proposed compression methods
to a random projections strategy often employed for compressed
sensing and to a supervised regression based channel dropping
strategy traditionally applied in BMI applications.

I. INTRODUCTION

Brain machine interfaces (BMIs) have the potential to
help individuals with functional impairments, such as loss
of motor control, due to neurological disease or spinal cord
injury [2], [7], [8]. BMIs map brain signals acquired in
relevant brain regions to patient intent to enable functional
restoration. In previous studies, BMIs have enabled patients
to control robotic arm movements [1], and type by translating
brain signals directly into text [3]. Intracortical BMIs record
and sample brain signals from relevant regions of the brain
at rates high enough to process both local field potentials
(LFP) and action potentials (spikes). In particular, spike
counts in single-unit [1] and multi-unit [3], [6], [7] extra-
cellular recordings have been used as input features in high-
performance BMIs. To that end, increasing the number of
simultaneously recorded electrodes is important for advanc-
ing prosthetic performance and for studying the dynamics of
neural population with increasing precision. Thus, over the
last few decades translational and exprimental neuroscience
studies have sought to record from larger populations of
neurons and technologies to enable basic studies have ad-
vanced to address this need. For example, Neuropixel 2.0 can
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simultaneously record spiking activity from 758 sites out of
10,240 available sites across two 4-shank probes [10]. The
Argo, designed with 65,536 channels, has been applied to
record spiking activity from 791 neurons and cortical surface
LFP activity from over 30,000 channels [11]. While the
number of available recording sites in recent technological
advances continues to increase exponentially [12], the num-
ber of simultaneous recording channels of spiking activity in
clinical applications continues to lag behind. Broad clinical
application will require integrated device designs that facili-
tate implantation by minimizing or eliminating the need for
wired connections to devices, necessitating integration with
active electronics. However, simultaneous high resolution
measurement of spiking activity is power intensive, as it
typically requires signal filtering, amplification, digitization,
and telemetry. The power requirements introduce a critical
constraint on the number of recording sites due to the
challenges of power delivery and the negative impacts of
brain tissue heating [13].

Several studies proposed strategies to decrease power
requirements of each recording channel by relaxing signal
processing requirements. Nason et al. showed that system
power consumption is reduced by replacing the spike count
feature traditionally employed for neural decoding with a
spike band power feature; for motor decoding they demon-
strate performance comparable to that achieved with spike
count features [2]. Even-chen et al. showed that power re-
quirements can be reduced by relaxing design specifications
of more traditional architectures, which results in added noise
to spike count features, but has negligible impact on decoding
performance for motor BMI applications [7].

In this study, we present and evaluate a complimentary
strategy in which input neural feature channels can be com-
bined or dropped in a principled and unsupervised manner
to reduce the number of output channels without sacrific-
ing application specific BMI performance. Such a strategy
suggests opportunities for the redesign of invasive neural
interfaces which could enable higher neural feature channel
count recording with potential power savings through sub-
linear scaling of power requirements. As a starting point for
this strategy, we develop and apply methods to single-unit
spike count features, which form a set of initial sensing
channels. Specifically, the goal is to apply unsupervised-
learning-based channel compression methods to combine
these channels while minimizing loss of information. By
simply adding spike count features to simulate combined
channels, we reduce the channel count while maintaining
good scoring on multiple evaluation metrics that estimate
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information in the original and compressed channels. The
channel compression algorithm we develop is predicated on
the assumption that a set of lower-dimensional (low-D) latent
variables can effectively describe the activity of a higher-
dimensional (high-D) population of neurons. Previous work
demonstrated that low-D latent variables can capture neural
variability effectively, relate better to behavioral features, and
enable better performance in online BMIs than traditional
features based directly on (high-D) neural observations [6],
[8]. Trautmann et al. reported that the neural population
dynamics, as described by low-D latent variables, can be ac-
curately estimated from unsorted multi-units [5]. That study
connects unsorted multi-units, which are mixtures of single
units, to the theory of random projections and compressed
sensing. This provides motivation for us to study whether
informed mixtures of single-unit features, based on designed
compression methods, can yield high accuracy estimates of
low-D latent variables with even lower numbers of channels.
This would allow neural features to be compressed to a
fewer number of channels, enabling the design of neural
prostheses that utilize such compression to potentially reduce
power requirements, without compromising the application
specific performance requirements. To quantify the loss of
information due to compression, we introduce two evalu-
ation metrics to assess the latent variables inferred from
compressed features. The first metric measures how well
the latent variables can represent the original neural features
by predicting the activity of a neuron left out during the
variables’ inference. The second metric evaluates how accu-
rately the latent variables can explain and relate to behavioral
features; in the case of the empirical motor physiology data
tested in the current study, the behavioral features are arm
movement kinematics. Lastly, as the proposed method is
an unsupervised method for low-D feature generation, we
compare it to supervised feature selection methods similar
to those that have been employed in previous motor BMI
studies.

II. METHODS

A. Dataset

The feature compression methods described were empiri-
cally evaluated with the publicly available ”pmd-1” dataset
from the Collaborative Research in Computational Neuro-
science [1]. This dataset includes extracellular recordings
from two Utah Multi-electrode Arrays (MEAs) implanted
in dorsal premotor cortex (PMd) and primary motor cortex
(M1) of a monkey engaged in an upper limb reaching task.
During the task, the monkey controlled a cursor on screen to
acquire sequentially appearing targets. Targets appeared at
random locations within a 5.15 cm radius of the previous
target. The workspace was 20 cm x 20 cm with 2 cm
square targets. There are 496 sequential reach trials in the
dataset, split 80% for training the model utilized in this study
and 20% for testing and measuring the evaluation metrics.
From the MEAs, 93 neurons from PMd and 67 from M1
were manually sorted [1]. Before any compression method
is applied, each input channel is the spike count of a single

neuron across time. Once a compression method is applied,
multiple neurons can be combined and mapped to a single
output channel. Hence, in the methods and results we will use
the term channels to refer to output channels that individually
are spikes counts from one or more combined neurons across
time.

B. Channel-wise compression by combination

In this work, spiking features are compressed by summing
spike counts from multiple neurons. We define the uncom-
pressed neural spike counts by Y ∈ <N×T such that N is
the number of initial sorted neurons and T as the number of
timepoints within the dataset. We also define YD ∈ <D×T as
the compressed feature set with D representing the number
of channels after compression. Therefore, we define the M
matrix such that:

YD = M ∗ Y (1)

M matrix formulation is the main goal of this work.
The M matrix compresses the original dataset by combining
input channels and is formulated by different strategies. The
goal is to develop strategies that maintain information about
the spiking of the original population of single neurons in Y
while reducing D.

Fig. 1: a) Graphical illustration of channel compression as
defined in this work, b) Example M matrix structure.

We impose several constraints on the design of the M
matrix:

• The M matrix is applied to combine spike counts in
channels, thus M must be binary.

• Channels from the N neurons in Y can be mapped to
only one of the D channels in YD.

• All channels must be mapped to an output channel.
No channels are dropped in the compression, thus the
column sum of the M matrix has to be 1. Note: we
consider dropping channels later in the Discussion.

C. Greedy dimensionality reduction

As an initial examination of compression strategies, we
consider taking a greedy approach in which channel count
is iteratively reduced. Channels are initialized as sorted
single neurons and at each iteration one pair of channels
is combined to reduce the channel count by 1. The pair
is selected by evaluating a metric defined by a designed
compression method. Channels are combined iteratively until
a desired number of channels remain.

6582



D. Latent neural trajectory estimation

After each M matrix is produced for a compression
method, we extract trajectories of the latent variable from
compressed channels to be evaluated. Trajectories are es-
timated by applying Gaussian Process Factor Analysis
(GPFA). GPFA is a generative probabilistic model developed
by Yu et al. [4] for application to neural spiking data
that unifies learning temporal smoothing and dimensional-
ity reduction parameters with the goal of extracting latent
variable trajectories that describe shared variability in the
original high-dimensional data. The latent variables in GPFA
is defined here as Z ∈ <Q×T , where Q < N . Therefore, the
relationship between the observations and the latent variable
at time t ∈ T is given by:

yt: |zt: ∼ N (Czt: + µ,R) (2)

Where zt: represents all the latent variables at timepoint t,
C ∈ <N×Q is the factor loading matrix, µ ∈ <N×1 is
the mean of the neural observations, and R ∈ <N×N is
the covariance. Each latent variables is correlated with itself
across time through a Gaussian process (GP):

z:i ∼ N (0,Ki) (3)

where Ki ∈ <T×T is the covariance matrix of the ith
Gaussian process. The smoothing properties is determined
by the choice of the form of the GP covariance. The form of
K chosen is a squared exponential covariance function. The
neural states can be inferred by:

E[z̄ | ȳ] = K̄C̄ ′(C̄K̄C̄ ′ + R̄)−1 ∗ (ȳ − µ̄) (4)

In equation 4, ȳ and z̄ are concatenations of features of
neural observations and neural states respectively across all
timepoints T . C̄ and R̄ are T blocks of C and R, and K̄ is
composed of Q sub-matrices where each sub-matrix along
the diagonal is the covariance between two timepoints in the
neural state i, K̄i,(tm,tn) (more details in [4]). Using GPFA,
we infer the low-D trajectory (i.e. the latent variables across
time) based upon Y and the compressed YD. To facilitate
direct comparison of models, GPFA parameters are learned
once from the original uncompressed dataset Y and the
compression matrix M is applied to the learned parameters
to find the parameters of the reduced dataset YD:

y = Cz + µ+ ε→ yD = My = MCz +Mµ+Mε (5)

Therefore the parameters of the GPFA model of the
reduced dataset are given by: CD = MC and µD = Mµ.
The covariance RD = cov(Mε) = MRM ′. The M matrix
compresses neural observations only, while the latent space
is unchanged, thus the compression does not change K. We
employ 4-fold cross-validation to the dataset and train four
separate GPFA models. The parameters for each model are
used in the compression methods, described below, to learn
4 different sets of M matrices for each method.

E. Evaluation Metrics

After extracting the trajectories of the latent variables for
the compressed dataset E[z | yD] and the original dataset
E[z | y], we assess the impact of compression by evaluating
two performance metrics as a function of the number of
compressed channels. The metrics evaluate how well the
latent variables can represent the high-D neural features
(original channels) and the behavioral features.

Leave-out neuron goodness-of-fit (prediction error):
This evaluation metric is adapted from Yu et al. [4]. The
metric estimates the activity of neuron j from the latent vari-
ables inferred from all other neurons in the testing set. That
is, neuron j is dropped, then the remaining neurons are used
to infer the latent variables which are then used to predict
the activity of neuron j. Both inference and prediction of the
test set are done with the model parameters learned from the
training set. The prediction error is computed by measuring
the sum of squared error between the original neuron and its
prediction. This metric evaluates how much the low-D latent
variables represent and predict the neural observations. As
we iteratively reduce the number of channels, we expect this
error metric to monotonically increase.

Kinematic reconstruction error: Kinematics reconstruc-
tion is an important evaluation metric for motor prostheses
design. We seek evaluate how well the low-D population
encodes the behavior. The behavior in this work is the
hand position as the monkey is engaged in the reaching
task. We use optimal linear estimators to build a simple
linear relationship between the behavior and the trajectories
of the latent variables inferred from either the original or
compressed channels [9].

F. Compression methods

Finally, we discuss the compression methods used to
combine channels. These methods vary between operating on
the neural observations alone or both the latent variables and
observations. In the current work our compression is based
upon the relationship between the neural population and the
latent variables without considering correlations across time.
That is, the current methods do not leverage relationships
learned by the GP component of GPFA. The joint distribution
between the observations and the latent states is given in
equation 6. [

y
z

]
∼ N (

[
d
0

]
,

[
1 C ′

C CC ′ +R

]
) (6)

Private noise: In this method, we combine channels based
on their private noise as given by the covariance matrix
R. Channels with the highest private noise are combined
together in order to minimize the effect of multiple private
noisy channels in latent variable estimations.

Conditional entropy: Entropy is the measurement of
uncertainty in a random variable. We utilize conditional
entropy to evaluate how much of the latent variable entropy
is affected by the choice of compression for the observation
channels. That is, we measure the conditional entropy, given
in equation 7, of the latent variable given the current channel
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Fig. 2: Prediction error is shown for a) M1 and b) PMd through iterative greedy combinations for private noise and conditional
entropy methods, as well as application of a random projections base approach. c) and d) Kinematic reconstruction error is
shown for M1 and PMd, respectively. e) and f) Reconstructed x-position for two similarly performing M Matrices is shown,
one for random projections and one for the conditional entropy method for both M1 and PMd, respectively.

set. In each greedy iteration, we evaluate which combination
of channels has the lowest conditional entropy.

H(Z | Y ) = H(Z, Y )−H(Y ) (7)

We know that by combining channels, we lose mutual
information and thus the conditional entropy is expected
to increase monotonically. At each iteration, we select the
channel pair that minimizes this increase in entropy. This
allows us to reduce the channel count at each iteration while
minimizing loss in mutual information as defined by the
GPFA model.

III. RESULTS

Based on the complexity of the task, we chose the la-
tent dimension Q = 20 as previous studies with similar
recordings suggest that it is sufficient to capture sufficient
neural variance from the population [4], [8]. To evaluate
how well the proposed compression methods performed,
we simulated a random projections approach as a control.
This control analyses generated 100 randomized M matrices
for all reduced output dimension D. These randomized M
matrices are assessed through all of the trained models in
the 4-fold cross validation. Figure 2 shows both evaluation
metrics for M1 (a,c) and PMd (b,d) data. The plots shown for
private noise and conditional entropy are the average of the
4-fold cross-validation, while the random plot is the average
per reduced dimension of the 4-fold and across all random M
matrices. The plots suggest that combining channels based
on private noise is a poor choice as it often performs worse
than random projections with respect to both metrics while
the conditional-entropy-based method outperforms all of the
other methods. Sub figures e) and f) show reconstruction
of the x-axis of hand position for two similarly performing

M matrices in both M1 and PMd respectively. Qualitatively,
it can be observed that conditional entropy has similar
reconstruction to randomized M matrices with almost half
the number of channels required.

IV. DISCUSSION

We used two different strategies to compress the data and
evaluate how well the latent variables can be inferred after
compression. These inferred variables are assessed through
evaluation metrics that measure their ability to 1) represent
the original single unit neural observations and 2) encode
behavioral features. Overall, the conditional entropy method,
which optimizes compression using an iterative greedy ap-
proach, achieves good results compared to a random projec-
tions based approach.

To further evaluate the efficacy of compression that com-
bines single unit channels with the conditional entropy
method, we compare its performance to that of more tra-
ditional neuron dropping approaches (Figure 3). We apply
the novel conditional entropy approach to drop the least
informative neurons at each iteration (retaining the subset
of neurons that increase conditional entropy the least at
each iteration without forming multiunit channels). The goal
of this approach is to retain the most informative single
unit channels at each iteration. We also mix the single
unit combination and channel dropping approaches in an
algorithm that chooses which method increases conditional
entropy the least at each iteration.

We compare these unsupervised single unit combination
and single unit dropping approaches to a single unit dropping
approach that utilizes a supervised regression model; by
applying a regression model between the hand position and
the neural observations, we drop the least significant neural
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Fig. 3: a) Prediction error and b) reconstruction error in
M1 for the unsupervised combination, unsupervised feature
dropping, and supervised regression models.

features (based upon p-values from the regression model).
This approach resembles supervised feature selection meth-
ods often employed for BMI applications. Surprisingly, with
respect to kinematic reconstruction error, the unsupervised
method yields similar performance to the supervised method.
Critically, the unsupervised approach, unlike the supervised
approach, operates without any knowledge of the behavioral
features. Figure 3 also suggests that latent variables estimated
through combinations of single units are better representative
of the original single unit observations than the single unit
dropping approach and the supervised method. Lastly, with
respect to both metrics, our analysis of motor control data
suggests that unsupervised combination outperforms meth-
ods that retain single units by a channel dropping approach.
Note the channel dropping approach resembles strategies that
are readily employable by conventional interface architec-
tures, which often utilize multiplexers to facilitate channel
down selection. This result suggests that if output channel
dimensionality is limited, neural interface architectures that
facilitate data-driven combination of single unit channels
may yield superior performance to system designs that are
limited to single unit channel down selection only.

This work describes a strategy for compressing the number
of output spike count channels based upon summing groups
of single neuron channels to combine them into multiunit
channels. By applying this strategy to neurophysiological
data, we demonstrate that output channel count can be
reduced with an unsupervised approach by choosing channel
combinations that minimize loss of information in an inferred
low-D latent variable space. By relaxing the requirement to
transmit single neuron spike counts, our strategy suggests
neural interface system designs with the potential to achieve
sub-linear power scaling with respect to recording channel
count. Such power-efficiency gains can enable the develop-
ment of clinically viable, fully implantable neural interfaces

with increased application-specific performance, such as
more accurate and robust functional motor restoration[14].

Moving forward, the models described and results pre-
sented motivate a number of future directions.
• In the future we aim to augment the methods by

accounting for temporal dynamics of the latent variable.
• We used spike counts of sorted single-unit recordings as

the features in this study. In the future we plan to study
how well the methods developed here extend to neu-
ral features that enable power-efficient implementations
through modifications of neural interface architectures.

• We will employ a variety of behavioral studies in multi-
ple species to further evaluate the proposed techniques.
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