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Abstract— Previous studies have shown there is a re-
lationship between sleep and mobility in older adults by
collecting and analysing self-reported data from surveys
and questionnaires, or by using objective measures from
polysomnography or actigraphy. However, these methods
have limitations for long-term monitoring, especially for
community-dwelling adults. In this paper, we investigate
the association between sleep and indoor mobility using
longitudinal data collected over a period of about 12
months for older adults (65 years or older) living at home
in Australia. The data was collected objectively and con-
tinuously using non-invasive and passive sensors. First, we
explored whether sleep and indoor mobility are different
across gender and age groups (70s, 80s, and 90s). Second,
we investigate the association of sleep and next-day indoor
mobility through a stepwise multivariate regression. We
found that males and females have significant differences
in mobility, time in bed, total time in sleep, number and
duration of awakenings and sleep efficiency. Additionally,
mobility and all sleep measures significantly vary across
the three age groups, except for sleep onset latency between
80s and 90s. Our findings show that sleep efficiency and
total sleep time are the key sleep measures affecting next-
day mobility, while sleep onset latency has the least effect.

Clinical relevance - Our study contributes to a better
understanding of the sleep patterns of older adults and
how they affect their physical functioning.

I. INTRODUCTION

Poor sleep and reduced physical activity, which are
commonly reported by older adults, may lead to a
significant decline in health and well-being over time.
It has long been recognized that exercise can improve
sleep quality [1]. On the other hand, poor sleep and
sleep disturbances can limit the physical functioning of
older adults [3]. In this paper we study the relationship
between sleep and the next-day mobility of older adults
(aged 65 and older) living at home in Australia, where
motion and sleep are measured objectively using non-
obstructive sensors over a long period of time.

Sleep and physical activity are typically assessed
using self-reported measures. For example, Valenza et
al. (2013) [5] employed two questionnaires (Pittsburgh
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Sleep Quality Index and the Functional Status Ques-
tionnaire) to study the correlation between sleep and
mobility. However, self-reported answers from surveys
may be biased by personal perceptions and poorly cor-
related with objective measures [4]. Recent studies used
a mixture of subjective and objective measures [6, 16].
The objective measures are typically based on: (1) lab-
restricted measures of sleep (using polysomnography)
and activity (direct measurements of walking steps or
speed), or (2) sleep-wake cycles measured via actigraph,
worn on the dominant wrist for at least 7 days. Objective
measures of sleep and physical activity assessed in lab-
based environments are not only invasive and expensive,
but also do not reflect the participant’s natural living
environment. Actigraphy has also many limitations for
longitudinal monitoring, including the limited battery
life and the requirement to wear it continuously, which
may not be always convenient or the participants may
forget to do it.

There is a need to better understand the relationship
between sleep and physical activity for older adults
monitored in their natural living environment over a
long period of time, without any disruption to their
daily routine. This includes understanding the sleep and
activity differences across age and gender, to inform
better support and in-home interventions. With the re-
cent advances in smart home technologies, home-based
sensor networks were proposed to support independent-
living through continuous monitoring of health and
wellbeing [7-10]. They can facilitate longitudinal mon-
itoring of sleep and daily living activities in the home
environment, as non-intrusive and passive sensors best
align with the natural lifestyle of older adults. Another
advantage of in-home sensors is their ability to capture
spatio-temporal features of the events, which allows to
investigate not only the immediate, but also the long-
term association between sleep and mobility.

In this paper, we investigated the the association of
sleep and indoor mobility captured over a year from
Australian community-dwelling older adults (aged 65
and older). The data was collected objectively and
continuously through non-invasive and passive sleep
and motion sensors. We considered six objective sleep
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measures and a measure of indoor mobility to explore:
1) the differences between sleep and mobility across
gender and age groups (70s, 80s, and 90s), and 2) how
sleep affects next-day mobility.

II. METHOD

A. Study design

This study is part of the Dementia and Aged Care Ser-
vices (DACS) project which involved 200 community-
dwelling residents aged 65 and over in a randomised
control trial. All participants lived in their homes in
Brisbane, Australia, and received low-level age care
service (visits by a carer to help with daily activities 1-2
times a week). Half of the participants were equipped
with the Smarter Safer Homes package [13], which
included passive motion and sleep sensors.

To ensure high data quality, we only included data
from participants who lived alone. To avoid the im-
pact of cognitive problems on the measurements, only
cognitively healthy participants (as confirmed by the
Abbreviated Mental Test [14]) were included in our
analysis. This resulted in 36 participants for our study
- 13 males and 23 females - with an average age of
83.5±7 years. As the participants could withdraw from
the study during the monitored period, the length of the
recorded data ranged from 15 to 378 days. In total, 7847
valid days of sensor measurements were recorded from
36 participants.

B. Data collection

The sensor data used in this study is continuous
motion and sleep data. In particular, we computed
indoor mobility, since we only deployed non-wearable
sensors inside their homes. Daily steps, as a measure
of mobility, is key to the assessment of physical func-
tioning [11]. We followed the same approach proposed
in [12] to quantify indoor mobility through travelled
distance derived from passive infrared (PIR) sensors and
topological indoor maps.

The mobility data was collected using off-the-shelf
PIR motion sensors with a 5-metre motion detection
range and 120-degree field of view. The motion sensors
were installed in the participant’s home, in the corners of
the rooms near the ceilings, to detect all movements in-
cluding entering and exiting the room. Due to the small
room sizes, only one sensor per room was deployed,
ensuring that the field of views of adjacent rooms do
not overlap and thus avoiding simultaneous triggers by
multiple sensors.

Table I shows an excerpt of the PIR motion data for
one participant. The motion sensor has a cooling-off
period of 4 minutes. Once the sensor is triggered by
the first movement, a value of ’1’ is transmitted to a

centralized database and the 4-minute period starts. If
any further movement is detected within the cooling-
off period, no value will be sent to the database, but
the sensor re-starts the 4-minute period. In case of no
trigger within the cooling-off period, a value of ’0’ is
sent at the end of the period. The use of cooling-off
period reduces the values sent back and thus maximizes
the sensor’s battery life. Table II is a pairwise sensor-
to-sensor distance map in number of steps, measured by
our team.

TABLE I: An excerpt from PIR motion sensor data of
one participant.

Motion
sensor ID Sensor location Local timestamp Value

7184 bedroom 22/10/2019 18:51 1
7209 bathroom 22/10/2019 18:57 1
7209 bathroom 22/10/2019 19:01 0
7194 living room 22/10/2019 19:09 1
7189 kitchen 22/10/2019 19:09 1
7194 living room 22/10/2019 19:13 0
7189 kitchen 22/10/2019 19:15 1
7189 kitchen 22/10/2019 19:19 0

TABLE II: Topological room distance map (in steps) of
PIR sensors deployed in different rooms.

From
To Bedroom Bathroom Study Kitchen Living room

Bedroom 4 5 16 12
Bathroom 4 5 14 14
Study 5 5 12 10
Kitchen 16 14 12 7
Living room 12 14 10 7

The sleep data was collected using an unobtru-
sive mattress-based EMFIT sensor [2]. This is a
ballistocardiography-based sensor which measures me-
chanical chest wall movements from heartbeat and res-
piration, from which sleep measures are then inferred. A
sleep episode is recorded from the time the person goes
to bed until they leave the bed. If the individual leaves
the bed for more than 10 minutes and then returns,
another sleep episode will be recorded. Hence, multiple
sleep episodes may be recorded during the night.

C. Sensor data processing

Mobility is represented by the daily travelled distance
in steps within the time frame from 6am to 11:59pm.
This is achieved by firstly removing repetitive PIR
sensor logs where the recordings did not indicate inter-
sensor transitions, and then summing the inter-sensor
steps using the indoor distance maps.

Sleep is measured at night, by extracting sleep mea-
sures from the sleep episodes recorded from 7pm on the
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current day until 6am on the next day. A mobility mea-
sure was then extracted from 6am on the next day. This
is referred to as ”next-day mobility” in our analysis.
The sleep measures used in our analysis include: Total
Sleep Time (TST), Sleep Onset Latency (SOL), Wake
After Sleep Onset (WASO), Total duration In Bed (TIB),
number of awakenings (Awake), and Sleep Efficiency
(SE, which is TST divided by TIB). Days with mobility
equal to 0, any wrong status for any motion sensor, or
no nocturnal sleep were all excluded from our analysis.

D. Data Analysis

To investigate if there are significant differences in
sleep and mobility between gender and age groups,
we used the Mann-Whitney U test between the 13
males and 23 females, and the Kruskal-Wallis test with
Dunn’s post-hoc test for comparison among the three
age groups (12 people in their 70s, 15 in their 80s, and
9 in their 90s). These tests were selected after using
the Shapiro-Wilk test to assess whether the sleep and
mobility measures were normally distributed.

To explore the effect of sleep on next-day mobility,
we used linear regression analysis. The independent
variables are the six sleep measures (TST, SOL, WASO,
TIB, SE, and Awake) and the dependent variable is
the next-day mobility. First, an ordinary least squares
multiple regression model was built for data from each
participant, and then a stepwise analysis was applied to
select the optimal variables that have significant impact
on next-day mobility. This analysis adds or deletes vari-
ables from the linear model in a forward and backward
process to determine an optimal model. The criteria of
the stepwise model were set to obtain the smallest SSE
(sum of squared residuals) error, which measures how
well the model fits the data, while keeping the t-statistic
of the variables significant (<.05).

We further analysed the selected optimal variables
from the 36 individual models across gender and age
groups to investigate which are the most frequently
selected sleep parameters.

III. RESULTS

A. Differences in sleep and mobility across age and
gender

Table III shows the mean values and standard devi-
ation for the objective measurements of mobility and
sleep across gender and age groups, and Table IV
presents the statistical test results.

While the sleep onset latency (SOL) was similar
across males and females, female had higher mobility
than males, longer sleep (TST) and time in bed (TIB),
longer wake after sleep onset (WASO), higher number
of awakes (Awake) and slightly higher sleep efficacy

(SE). The results showed that males and females had
significant (p <.05) differences in mobility and sleep
patterns, except for SOL.

Comparing the three age groups (70s, 80s, and 90s),
we observed that there are variations in sleep and
mobility. While the number of awakenings (Awake) and
their duration (WASO) increases with age, there is an
increase-decrease trend in TST, TIB, and SE, decrease-
increase in mobility, and only slight differences in SOL.
Table IV (b) shows that all differences across the age
groups were statistically significant, except for SOL
between 80s and 90s (p = 0.002 > 0.05/3), as indicated
by Dunn’s post-hoc test.

Variables Male (n = 13) Female (n = 23)

Mobility (steps) 580.87± 334.99 652.14± 361.86

TST (hours) 6.82± 2.37 7.01± 1.92

SOL (minutes) 25.03± 12.75 24.56± 12.84

WASO (minutes) 78.70± 32.95 83.00± 40.71

TIB (hours) 7.94± 2.49 8.14± 2.01

Awake (number) 1.81± 1.53 1.97± 1.57

SE (TST/TIB) 0.85± 0.07 0.86± 0.07

(a)

Variables

70s
n = 12

(5 males, 7 females)

80s
n = 15

(7 males, 8 females)

90s
n = 9

(1 male, 8 females)

Mobility (steps) 624.13± 336.99 575.83± 361.08 702.60± 343.89

TST (hours) 6.17± 2.21 7.69± 1.92 6.64± 1.87

SOL (minutes) 24.00± 11.61 24.90± 13.36 25.60± 13.34

WASO (minutes) 76.06± 38.12 82.54± 40.62 86.08± 29.94

TIB (hours) 7.24± 2.36 8.80± 2.01 7.87± 1.93

Awake (number) 1.58± 1.33 1.93± 1.72 2.31± 1.42

SE (TST/TIB) 0.84± 0.08 0.87± 0.06 0.84± 0.07

(b)

TABLE III: Descriptive statistics (mean and standard
deviation): (a) by gender, (b) by age group

B. Association between sleep and next-day mobility

A stepwise multivariate linear regression model using
the six sleep parameters as independent variables and
the next-day mobility as a dependent variable was built
per participant, resulted in total of 36 models. Table
V shows some examples of the models’ output with
their coefficients and adjusted R2, where a significant
association between sleep and mobility was observed
(p<.05).

An inspection of the adjusted R2 of the 36 individual
models (mean value and standard deviation: 0.871 ±
0.079) showed that the value was greater than 80% for
34 of them, while for the other 2, it was between 0.6 and
0.8. This suggests 80% of the variance in the next-day
mobility can be explained by the objectively measured
sleep for the majority of participants. In addition, the
high value of adjusted R2 indicates that the selected
sleep variables were useful and added value to the
model.

An in-depth analysis of the effect of the sleep mea-
sures for each group and overall is shown in Table VI.

2402



Variables
Mann-Whitney

U statistic p value

Mobility 6678801 < .01

TST 6913441 < .01

SOL 7375678 .075
WASO 7312716 .019

TIB 6896971 < .01

Awake 7074973 < .01

SE 7028830 < .01

(a)

Variables
Kruskal-Wallis

H statistic p value Variables 70 vs 80 70 vs 90 80 vs 90

Mobility 222.99 < .01 Mobility < .01 < .01 < .01

TST 781.48 < .01 TST < .01 < .01 < .01

SOL 25.66 < .01 SOL .015 < .01 .002
WASO 196.90 < .01 WASO < .01 < .01 < .01

TIB 701.95 < .01 TIB < .01 < .01 < .01

Awake 303.54 < .01 Awake < .01 < .01 < .01

SE 483.30 < .01 SE < .01 < .01 < .01

(b)

TABLE IV: Comparison of sleep and mobility: (a) by
gender - Mann-Whitney U test, (b) by age group -
Kruskal-Wallis H test and p-values of post-hoc Dunn’s
test.

We found that SE was the most important variable -
it had a significant effect on next-day mobility in 35
out of 36 regression models. WASO appears as a key
measure in 17 out of 36 models; however, its coefficients
are much smaller (ranging from 0.4 to 3.5) compared
to the other variables, which suggests that it only has
a slight effect on the next-day mobility. TST was the
next most important variable, appearing in 13 out of 36
models. SOL had the least effect on next-day mobility
with no significant effect on next-day mobility for the
80s age group.

TABLE V: Examples of the stepwise multivariate mod-
els.

Age Gender Valid
days

Adjusted
R2

Coefficients (p < .05)
TST SOL WASO TIB Awake SE

79 male 323 0.82 -23.26 1.67 -31.14 698.78
79 female 157 0.89 1.20 646.55
89 male 171 0.85 542.06
83 female 87 0.94 0.923 163.07
90 male 298 0.81 -3.54 954.83
91 female 179 0.93 -117.12 0.98 66.78 802.42

IV. DISCUSSION

The purpose of our study was to investigate the
association of sleep and mobility in older adults (age 65
and over), where the mobility and sleep were objectively
and continuously measured with non-obstructive sensors
over a long period of time (up to 378 days). In particular,
we investigated differences across gender (males and
females) and age groups (70s, 80s and 90s). We also
studied the effect of six different sleep measures on

TABLE VI: Number of occurrences of the sleep pa-
rameters with significant effect on next-day mobility,
derived from the 36 multivariate models when grouped
per gender and age.

Total number of
occurrences

TST SOL WASO TIB Awake SE
13 4 17 7 5 35

Age-wise
occurrence

70s 5 3 8 2 1 12
80s 5 0 6 2 3 14
90s 3 1 3 3 1 9

Gender-wise
occurrence

Male 6 2 5 2 3 13
Female 7 2 12 5 2 22

next-day mobility using stepwise multivariate regression
models.

We found that sleep and mobility varied significantly
across gender. Women had statistically significantly
higher mobility and higher values of all sleep param-
eters, except for sleep onset latency (SOL). Sivertsen
et al. [17] found that SOL was statistically significantly
longer in women than men. However, their study in-
cluded younger participants - aged 40 years and older,
so the results are not fully comparable.

There were also significant differences in mobility
and sleep between the three age groups, except for
SOL between 80s and 90s. As people get older, we
observed an increase in both the number and duration of
awakenings. There was a significant increase in mobility
between 80s and 90s. On the other hand, there was
an increase-decrease trend in TST, TIB and SE. The
decrease in sleep efficiency (SE) in the 90s is due to
the decreased sleep (TST) and bed duration (TIB).

Sullivan Bisson et al. [15] showed that walking is
related to better sleep quality rather than longer sleep
duration; however, it was unclear if mobility was more
closely related to SE or TST. A similar study, that
employed actigraphy-derived measures of walking steps
and sleep, showed no significant correlation between
daily walking steps and sleep duration [16].

The results of the 36 stepwise regression models
showed that the most important sleep measure associ-
ated with the next-day mobility was the sleep efficiency.
There was only one exception - the regression model
of a 88-old female based on data from 160 days, where
TIB had the biggest effect on mobility. Our analysis also
showed that SE had a direct relationship with mobility
regardless of age and gender. Therefore, the increase in
sleep efficiency was associated with a greater next-day
mobility for this cohort of participants.

This study has several limitations: (1) the sample size
is relatively small, (2) the accuracy of the measurements
of the sleep sensor may need further investigation,
and (3) within-room steps were not included, as the
PIR sensors and room topological maps cannot gauge
activities in the same room. Nonetheless, this is the
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first study to continuously and objectively monitor older
adults’ mobility and sleep over a long period of time
while not interrupting their daily life routines. The
results from our study can be used to promote in-home
interventions to improve the health and well-being of
community-dwelling older adults.

V. CONCLUSION

This study showed that there is a significant dif-
ference in sleep and mobility of older adults across
gender and age groups. Our finding also suggest that
sleep efficiency and total sleep time are the key factors
affecting next-day mobility of older adults regardless of
age and gender.

In future work we plan to investigate the effect of
mobility on the next nigh sleep and how different
activity levels in different times of the day can influence
sleep. We also aim to use machine learning techniques
to predict sleep as a function of mobility.
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