
  

  

Abstract— The estimation of Event-Related Potentials (ERPs) 
from the ambient EEG is a difficult task, usually achieved 
through the synchronous averaging of an extensive series of 
trials. However, this technique has some caveats: the ERPs have 
to be strictly time-locked with similar shape, i.e. emitted with the 
same latency and the same profile, with minor fluctuations of 
their amplitudes. Also, the method requires a huge number of 
valid trials (~100) to efficiently raise the ERPs from the EEG 
trials. In the case of cognitive ERPs, as with the N400, the 
delivered stimulus has to be different for each trial, the latencies 
are varying, and the number of available trials is usually low.  In 
this paper, an alternative method, coined Integral Shape 
Averaging (ISA) and its derivatives are detailed. ISA is robust to 
varying latencies and affine transforms of shape. Furthermore, 
a new method coined ISAD can be derived to extract ERPs even 
from a single trial experiment. The aim here is to illustrate the 
potential of ISAD for N400 component extraction on real EEG 
data, with emphasis on its general applicability for ERPs 
computation and its major assets like reduced experimental 
protocol. Some insights are also given on its potential use to 
study ERP variability, through shape and latency. 
 

Clinical Relevance— The proposed algorithm aims to be a 
helpful tool in clinical practice to analyze and interpret evoked 
responses in real experimental settings, especially for 
particularities in neurology. 

I. INTRODUCTION 

Event-related potentials (ERPs) are classically estimated 
through the synchronous averaging of a series of epochs 
extracted from an EEG recording with repetitive stimuli of the 
same nature, e.g. auditory or visual [1,2]. Ideally, the ERP 
latency and shape is assumed constant among all the trials, thus 
the averaging of an increasing number of trials will enhance 
the event-related response and decrease the randomness (non-
event-related) of the EEG activity. However, there are some 
cases in which synchronous averaging may lead to a biased 
estimation of the ERPs components. For instance, when 
extracting the highly elusive N400 component, a negative-
going deflection around 400 ms which is typically evoked in 
response to semantic incongruity [3], the synchronous 
averaging method usually returns a shallow signal that may not 
be a genuine ERP. One of the main reasons lies in the fact that 
the stimulus, e.g. a word, must be changed at each trial [4]. 
Consequently, each computed ERP may have different 
latency, width or more generally shape. An alternative to 
synchronous averaging, if the signals are made positive, is 
Integral Shape Averaging (ISA) [5,6]. If all the signals have 
the same shape despite jitter and width variations, the ISA 
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technique returns an averaged signal with the same common 
shape. Thus, unlike synchronous averaging, ISA overcomes 
the jitter-related issues that cause peak smoothening. Also, by 
using the ISA approach with some resampling techniques, it is 
now possible to estimate the shape variability among trials, by 
extracting the chosen ERP from a single trial. This method, 
named ISAD was already tested in [7] with simulations for 
Gaussians estimation drowned in white noise and yielded 
promising results [7]. Here we validate this approach to 
efficiently extract elusive ERPs components, like the N400, 
from ambient real-world EEG signals. In the following, the 
experimental conditions for data acquisition are described, and 
a short recall of ISA and ISAD is given, followed by a 
description of the results achieved and the comparison with the 
gold standard method, i.e. synchronous averaging. 

II. MATERIAL & METHODS 

A.  Data acquisition 
 Within the framework of a wider study on high-potential 
children, twenty continuous EEGs of 2 hours each were 
recorded from a cohort of young subjects at the University 
Hospital of Nice (CHU-Pasteur) using an ANT Neuro 
Eego/Mylab device with 32 electrodes Ag/AgCl mounted in 
an elastic Waveguard cap with 10/20 standard positions. From 
this set, we randomly selected one case study aged 10 to apply 
our new methods. Electrooculogram (EOG) was monitored 
using bipolar electrodes laterally to the left and right eyes 
(horizontal EOG) and above and below the left eye (vertical 
EOG). All electrodes (except for the bipolar channels) were 
single referenced and electrode impedance never exceeded 5 
kΩ. EEG was sampled at 2048 Hz. The clinical trial was 
performed in compliance with laws and institutional 
guidelines and was approved by the UCA’s CERNI (Comité 
d’Ethique pour les Recherches Non Interventionnelles). 

B. Experimental design 
 The data were collected using a classical semantic priming 
task to elicit the N400 component. The whole experimental 
protocol is illustrated in Fig. 1. Each trial consisted in the 
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Figure 1. Outline of the experimental protocol 
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central presentation of a first word (the prime), followed by 
the second word (the target) with a stimulus-onset 
asynchrony of 250 ms. Then, a third word is presented (“W3” 
in Fig. 1), which is the random repetition of one of the first 
two. The N400 component was recorded from the onset of the 
target word. This experimental protocol is well-known for its 
ability to elicit strong N400 responses due to a semantic 
priming phenomenon [8]. An accelerated processing of the 
target word can be observed when it is preceded by an 
associatively related prime word, compared to when it is 
preceded by an unrelated prime word. The semantic 
relatedness of each pair was manipulated such that in half of 
the trials, the prime and target words had a strong associative 
links (e.g., « dog – kennel »), while in the other half, they had 
no links (semantic, orthographic or phonological, e.g., « fork 
– eraser »). To constitute the pairs of words with the strong 
associative link, 87 pairs of French words were pre-selected 
from the standards of verbal associations for children [9]. 
Afterwards, 24 children (mean age = 10 years; S.D. = 10 
months; range = 8 years and 7 months - 11 years and 5 
months) were asked to rate, on a 7-point Lickert scale, the 
degree of similarity in terms of physical and functional 
characteristics (7 = very similar, 1 = not at all similar). Sixty 
pairs were retained among those judged the least similar with 
an average degree of overlapping characteristics of 1.81 (S.D. 
= 0.44; range = 1.15 - 2.95). All the targets were matched on 
length and written word-frequency in common texts [10]. To 
avoid fatigue and memory biases, one hundred similar 
variations of this trial were recorded. 

C. Data analysis 
 Fifty epochs ([-200 ms, 800 ms] with the target stimulus 
onset at 0 ms) were finally selected from the signal recorded 
at the CPz electrode, assessed to have the highest N400 
response [11], with referencing to the mastoids. Epochs with 
eye blinks, amplifier clipping, and muscle artifacts were 
excluded from the analyses by visual inspection. The signals 
were band-pass filtered at 0.1-30 Hz with half amplitude cut-
off. 

III.  THEORY 

Before describing our analysis, let us recall the theoretical 
concept behind ISA and ISAD. 

A. Integral Shape Averaging 
 Considering a series {fi(t)} of positive signals which are 
assumed to have the same shape, i.e. with all envelopes linked 
by affine transformations to a common prototype, their 
integral functions normalized by the areas under the curves 
may be seen as cumulative distribution functions (cDF). 
Namely, let S = { fi (t) | i = 1, …, N} be a set of real positive 
signals,  the cumulative distribution function 𝐹!⋆(𝑇) of signal 
fi (t) is defined as: 

∫ 𝑓! 	(𝑡)𝑑𝑡
#
$% 	= :	 𝐹! 	(𝑇)                       (1) 
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As cDF, it is monotonically increasing and spans values from 
0 to 1. Let us now average the inverse cDFs of all signals:  
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By plotting all the y values as function of the computed 𝑡&, we 
get an “integral average” cDF 𝐹&(+)∗ (𝑡) of all signals. Then, 
the ISA signal is simply the “mean” density function (pDF) 
obtained by differentiating the “mean” cDF 𝐹&(+)∗ (𝑡) in time t. 
The reader is referred to [6,7] for a more thorough description 
of the method. The main property of the ISA signal is that it 
has the same common shape as the initial signals {fi(t)}, with 
mean positioning in time and mean width for shape. It is 
important to stress out that this property is usually not 
obtained with synchronous averaging that requires strict time-
locked signals, higher number of trials and nevertheless still 
produces typical artifacts like peaks smoothing [5]. 

B. ISA of delayed windows of a single trial (ISAD) 
 The main limitations of ISA are that artifacts may appear 
when the shape of the signals varies too much from trial to 
trial, or when the number of trials is too small even for ISA 
(typically less than 20, in contrast with extraction of ERPs by 
synchronous averaging that requires at least 100 trials). A 
newly derived method, coined ISAD, was designed to apply 
ISA on a larger series of same-shape signals obtained through 
a resampling technique [12,13] on a single trial. Precisely, let 
𝑊. be our window of interest in the available trial, inside 
which most of the signal lies in time (in our case 500 
samples), and two other shorter windows 𝑊' and 𝑊/ of same 
length (200 samples) filled with randomly generated white 
noise (or potentially some EEG baseline noise) contiguously 
added before and after 𝑊.. By sliding the sequence of 
windows [𝑊',𝑊.,𝑊/] on the original single trial (see Fig. 2), 
with each new displacement of the windows containing a 
slightly different part of the signal of interest bordered with 
new sequences of noise, one gets a new series of ~250 epochs 
or signals on which ISA can be applied. In case some more 
genuine trials are available, another ISA (or other analysis 
tools) may be applied again on the whole series of ISAD 
signals obtained from each trial. As N400 ERPs are difficult 
to evoke [14] and synchronous averaging requires ~100 trials 
to get a decent ERP, this ISAD single trial approach provides 
an interesting new tool to study ERPs, even more when ISA 
of the ISADs is applied on a small number of genuine trials. 

Figure 2. A statistical resampling method: creating a larger set of signals 
for ISA processing by sliding ~250x a triplet of windows on a single trial 
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C.  Application to a real cognitive ERP: N400 component 
 Fig. 3 shows the synchronous averaging of the 50 trials. 
The N400 component is the negative wave with a minimum 
around 400 ms, with amplitude around -8 μV (compared with 
the 100 µV amplitude for the original EEG signal). From this 
curve we extract an interval [T1, T2] in which individual N400 
ERPs are most likely to be localized. Here, we took T1 = 285 
ms and T2 = 555 ms [14].  
 A central assumption underlying ISA and ISAD is that the 
considered signals are positive, which is intrinsically not the 
case of EEG. Several transformations can be used to obtain 
positive signals, e.g. the analytic amplitude from the Hilbert 
transform of the EEG or more simply by offset addition in 
amplitude. Indeed, it can be shown that shape equality in a set 
of signals is not altered if an offset equal to the minimum of 
the signal is added. Thus, each trial can be made positive by 
an offset addition with additional detrending to avoid baseline 
drifts. In order to study some within-subject variability in the 
ERPs, one may compare the shapes of the N400 components 
obtained by ISAD on trials k and l (with Sk and Sl being the 
sets of artificial signals obtained by resampling) using the 
shape similarity criterion based on the Distribution Function 
Method (DFM) [15,16,17], i.e. a “linear MMSE”-like error 
measuring how close the two cDFs 𝐹&(+!)

∗ (𝑡) and 𝐹&(+")
∗ (𝑡) 

may be transformed one into another using an affine mapping, 
as this would gives the same shape for the underlying signals 
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with ||.|| being the L2 norm on the selected interval [𝑇', 𝑇/] 
where the N400 components lie. The latency of a single trial 
is estimated by its mean time according to the following 
expression:  
 

𝑡6 ∶= ∫ 𝑡. 𝑦(𝑡)𝑑𝑡##
	#$

	/ ∫ 𝑦(𝑡)𝑑𝑡##
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	              (5) 
 

where 𝑦(𝑡) may be the synchronous averaging of all trials or 
any ISAD of a single trial. 

IV. RESULTS 
Fig. 4 shows some examples of five N400 components 
extracted separately from 5 different single trials. As expected 

for cognitive processes, a certain degree of variability of the 
signal shapes and amplitudes is obvious. Now, using the 
Distribution Function Method (DFM), we computed the 
shape similarity differences between the obtained ISAD 
signals and grouped them inside the symmetric matrix 𝛥. Fig. 
5 shows the shape distances of every ISAD signal from a 
particular one: a higher variability in shape may be noticed 
between trials 35 and 40, likely attributed to some psycho-
physiological annotated event. In fact, this estimator could be 
useful to analyze the patient's status based on abrupt changes 
of the ISAD shape. A latency of 428.4 ms was computed 
according to (5) for the N400 component in the synchronous 
average (Fig.3) while the latencies of the ISAD components 
plotted in Fig. 6 display again a high variability. The mean 
value of the 50 latencies is 423.5 ms with a standard deviation 
of 40 ms and a range of 80 ms. As suspected, the within-
subject variability of the latencies is again not negligible, 
demonstrating once more how the application of synchronous 
averaging in real settings may be sub-optimal with some loss 
of information, typical peaks smearing and even artifacts in 
the curves obtained. To further study the shape variability of 
the ISAD signals along time on the 50 trials, we proposed to 
use an ISA of moving sets of 5 consecutive ISAD signals to 
estimate the level of changes in shape similarity along time in 
the experiment. Fig. 7 displays four consecutive ISA of sets 
of ISAD which are highly different. This method allows to 
track discontinuities easily and precisely in shape and the 
evolution of latencies along time, that may be correlated to 
the patient psycho-physiological status. Now, it would be 
interesting to validate this information with objective 

Figure 3. Synchronous average of the 50 trials Figure 4. An example of variability between five ISAD signals 

Figure 5. Shape differences Δ7,l between all the trials and the 7th one: on 
the x axis, the number of trial; on the y axis the value of Δ7,l 
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measurements and annotations of the patient’s status and to 
compare it with other new alternative methods based on 
Machine Learning [18] that also promise single-trial analysis 
of latencies.  

V. DISCUSSION AND CONCLUSION 
In this paper, we introduced several ISA-based methods as 

alternatives to synchronous averaging for the extraction of 
cognitive ERPs and other features like shape similarity and 
latency from single trials. In particular, the advantage of our 
methods is twofold: on one side, it allows to consistently 
reduce the number of trials needed to get accurate ERPs 
estimations, thus drastically reducing the duration of the 
experimental protocol and alleviating the risk of any 
learning/memory or fatigue phenomenon; on the other side, it 
preserves some physiologically relevant information related 
to the patient’s status, which are lost with synchronous 
averaging. In fact, both the estimated latencies for each ISAD 
trial and the moving average of consecutive trials confirms a 
greater than expected within-subject variability during the 
same experimental session and sprouts a whole new field of 
study so as to understand the underlying subjective psycho-
physiological reasons that may be related to changes in 
stimuli, vigilance, attention, or task strategy [19]. Thus, 
clinicians could retrieve important information for their 
diagnosis, especially to achieve a finer assessment of 
particularities in neurology.  

In conclusion, this work presents a novel way to extract and 
analyze cognitive ERPs from single trials, taking into account 
the variabilities in shapes and latencies. The proposed 
algorithm could be quite helpful in clinical investigations to 
gain insights about the behavioral aspects in brain studies and 
also to optimize experimental protocols. 
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