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Abstract— In this paper, an algorithm designed to detect
characteristic cough events in audio recordings is presented,
significantly reducing the time required for manual counting.
Using time-frequency representations and independent sub-
space analysis (ISA), sound events that exhibit characteristics of
coughs are automatically detected, producing a summary of the
events detected without the need for a pre-trained model. Using
a dataset created from publicly available audio recordings, this
algorithm has been tested on a variety of synthesized audio
scenarios representative of those likely to be encountered by
subjects undergoing an ambulatory cough recording, achieving
a true positive rate of 76% with an average of 2.85 false positives
per minute.

I. INTRODUCTION

The information contained within the sounds produced by
the human vocal tract, such as speech, moaning, sighing,
and coughing, present an opportunity to facilitate remote
and non-contact monitoring of an individual’s health [1]. In
relation to physical health, coughing is a common symptom
for which patients seek medical advice [2], especially in
the acute and chronic categories [3], where a persistent
cough can severely impair an individual’s quality of life.
In determining the frequency and severity of a person’s
cough, a clinician can make a suitable diagnosis relating
to a person’s cough, and this is the objective of a cough
detection/monitoring system [4]. Having an objective mea-
sure of a cough is useful when tracking the progression of
an illness [5] especially in the process of early detection
and monitoring [6], highlighting the importance of cough
monitoring systems to aid with tracking the progress of a
disease.

Presented here is an algorithm designed to detect the
presence of candidate cough sounds in audio recordings.
The area of cough detection has received notable attention in
recent years. Semi-automatic approaches using hand-crafted
features as inputs to probabilistic neural networks (PNN) [7]
and statistical models [8]–[11] achieved satisfactory results
but rely on input from operators to successfully detect cough
sounds. More recent algorithms have used eigenvalue decom-
position with random forest classifiers [12], Hu moments
with k-nearest neighbours (k-NN) [13], spectral features
with time-delay neural networks (TDNN) [14], convolutional
neural networks (CNN) and recurrent neural networks (RNN)
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Fig. 1. Phases of a cough sound showing explosive phase, intermediate
phase, and decaying voiced phase.

[15], and gammatone filterbank cepstral coefficients (GFCC)
with support vector machines (SVM) [16].

The nature of cough sounds, as described in [17], share
characteristics with the signals produced by percussive and
harmonic musical instruments. Cough sounds typically begin
with a quick onset of wideband noise, stretching across a
spectrum up to 20 kHz, followed by a short stationary period
dependent upon the cause of the cough. An example of the
phases associated with a cough can be seen in Figure 1. The
onset of coughs share similar properties to the percussive
characteristics of drums, and in [18] the transient nature
of drum sounds were exploited using independent subspace
analysis (ISA) [19] to automatically transcribe drum tracks
from audio recordings. Due to the nature of ambulatory
cough recordings, cough sounds produced by a person are
likely to be more prominent within these recordings. The
repeated occurrences of a person’s cough and proximity to
a microphone means that the cough sound is likely to be
one of the sources contributing most variance to the recorded
signal. Given the variance based nature of ISA, it is expected
to produce candidate time-activation functions that coincide
with cough events. An example of this algorithm’s output is
illustrated in Figure 2, which highlights the time-activation
functions and corresponding frequency spectra for a short
drum loop containing three sounds (kick drum, snare, hi-
hat). The approach presented here builds on and refines the
ISA approach for the purpose of cough event detection.

II. METHODOLOGY

Many existing approaches to cough detection are trained
in a manner that aims to achieve generalisation such that
algorithms can correctly identify cough sounds in a wide
variety of recording scenarios. While generalisation is desir-
able in detection algorithms, it may not be required to achieve

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 1026



Time

F
re

q
u

e
n

c
y

1 2 3

Frequency spectra

Time activation function
1
2
3

Fig. 2. Illustration of ISA being applied to a short drum loop, highlighting
the significant time-activation functions and corresponding frequency spectra
of each drum.

satisfactory results when detecting the presence of repeating
events in more constrained scenarios. In ambulatory cough
recordings, the coughs present are likely to come from a
single person, which presents an opportunity, namely the
characteristics of the coughs to be detected in an audio
recording are likely to share similar time-frequency domain
features.

The algorithm proposed in this paper is designed to
summarise an ambulatory recording, producing a number of
short audio clips, each of which is likely to contain a cough
event. Using singular value decomposition (SVD) to analyse
the spectrogram of an audio signal, a set of time-activation
functions is produced which then undergoes independent
component analysis (ICA). Together, SVD followed by ICA
is known as independent subspace analysis. Significant peaks
in these time-activation functions are then used as markers
for candidate cough events since these peaks correspond to
the presence of high variance events in the audio recording.
Using a suitable threshold, candidate events can be marked
and extracted from the input audio signal and presented to the
clinician for further analysis and verification. The algorithm
overview is illustrated in Figure 3, and an implementation of
the algorithm is available at [20].

STFT SVD ICA

Kurtosis

Audio signal

Fig. 3. Block diagram illustrating the process of the proposed algorithm.
Further detail of each block in this process is presented in Section II of this
paper.

A. Short-time Fourier transform

The first task of this algorithm is to compute the complex
short-time Fourier transform (STFT) X of the input data x.
This is computed using (1).

X(k,m) =

N−1∑
n=0

w(n)x(n+mH)e−j2πnk/N (1)

where k is the discrete-frequency index, m is the hop number
for the analysis window, N is the frame size (2048 samples),
and H is the hop size (512 samples). A Hanning window is
used for the window function w, and the sampling frequency

is 44.1 kHz. X(k,m) is evaluated for k = 0, ..., N/2 and the
magnitude of these components are retained.

B. Independent subspace analysis

SVD first decomposes the input matrix X into three
matrices U , V , and S, to identify subspaces in order of the
variance they contribute towards the original data [21]. In
the context of the magnitude spectrum X , where columns
contain the magnitudes of frequency content for a single
analysis window, U are the frequency basis spectra and V
are the corresponding time-activation functions. The outer
product of each spectra and time-activation pair produces a
subspace of the original input data, and the input data can
be reconstructed using

X = USV T (2)

For this algorithm, the columns of V will act as time-
activation functions for cough events in the input data X , and
only the first nine singular values are computed (determined
experimentally to be optimal).

Figure 4 illustrates the input and output of SVD on an
example magnitude spectrum. These pairs of frequency-
basis spectra and time-activation functions (U1, U2, V1, V1)
both contribute towards reconstructing elements of both
“sources” in the magnitude spectrogram. Ideally a single
time-activation function would coincide with each single type
of event has occurred, but in practice this is not the case.
This can be overcome by applying ICA to the time-activation
function to transform the decorrelated time-activations into
statistically independent activation functions [22], [23]. This
is the principle underlying ISA. In Figure 4, the plots on the
right show the output of the ICA stage. The frequency-basis
spectrum and time-activation function pair’s contributions
towards reconstructing both sources in the input magnitude
spectrum has decreased significantly.

C. Time-activation selection and thresholding

Recall that in Section II-B the first nine singular values
were computed. In determining which time-activation func-
tions to retain, the kurtosis function k(v) is used,

k(v) =

∑M−1
m=0 (Vm,v − V̄v)

4/M

σ4
Vv

(3)

where Vm,v is the mth sample in vth column of V , V̄v and
σVv

are mean and standard deviation of vth column of V , re-
spectively. When normalised, kurtosis is 0 for a Gaussian dis-
tribution, positive for a “peakier” or leptokurtic distribution,
and negative for a “flatter” or mesokurtic distribution. Sparse
events are likely to occur sporadically in the time-activation
functions, meaning a majority of near-zero values, resulting
in a leptokurtic distribution. The time-activation functions
with the three highest kurtosis measurements are retained and
rectified to produce three candidate time-activation functions
c1, c2, and c3, for further analysis.

Peaks in each time-activation function correspond to mo-
ments in the input signal where the contribution of the cor-
responding frequency-basis spectrum is greater. A threshold
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Fig. 4. Illustration of the ISA algorithm on a sample magnitude spectrum. Input data (left) undergoes SVD to produce the frequency basis spectra U
and time-activation functions V . Applying ICA to the frequency-basis spectra and time-activation functions results in improved separation of the events,
as can be seen in the four plots to right.

τ = a.σc is applied to the candidate time-activation functions
to identify peaks, where σc is the standard deviation of c,
and a is a constant, with 4 < a < 8.

Retained peaks from the candidate time-activation function
are used to generate a summary of the input signal, where
1 s windows around each peak are extracted from the input
signal and concatenated to produce the short summary of the
input signal.

D. Dataset and evaluation

The dataset used in evaluating the proposed algorithm
was constructed from a number of publicly available cough,
non-cough, and background sources collected from YouTube
videos [24] and the DCASE 2016 Challenge [25]. Each test
signal comprises 20 coughs produced by one individual and
alternative foreground sounds (door knocks, table banging,
speech, laughing, etc.). In total, 10 test signals were created
with a duration of 10 minutes each. Instructions for reproduc-
ing these test signals, including annotations and URL links,
can be accessed at [20].

The evaluation framework used here is adapted from [26],
a framework for polyphonic sound-event detection which
overcomes the limitations of collar-based event decisions and
labelling subjectivity by annotators. True positive (TP) or
false positive (FP) decisions rely on the degree of overlap
with annotated events.

The overlap to between an annotated event and detected
event (see Figure 5) is measured and expressed as a ratio of
a 500 ms window, based on the average duration of coughs
presented in [27]. When this ratio exceeds the detection
tolerance criteria ρDTC , the detected event is labelled a TP,
otherwise FP is declared,

D =

{
TP, if to

500ms > ρDTC

FP, otherwise
, 0 < ρDTC ≤ 1 (4)

where D is a single detection and ρDTC = 0.3. Undetected
annotated events are classed as false negatives (FN).

The performance of this algorithm is quantified using the
true positive ratio (rTP ) and the false positive rate (RFP )
[26],

rTP =
NTP
P

RFP =
NFP
Tdur

(5)

where NTP and NFP are the number of true and false
positives, P is the number of annotated cough events, and
Tdur is the duration of the signal being analysed.

Fig. 5. Overlap between the time of a detected event tp and time of an
annotated event ta is used to determine if a detected event is classified as a
TP or FP. The overlap time to is expressed as a ratio of a 500ms window.
When this ratio exceeds the detection tolerance criteria ρDTC the detected
event is marked as a TP.

III. RESULTS

The mean values for the true positive ratio, false positive
rate, and summarised duration across all test signals are
presented in Table II. These results were produced for each
time-activation function. Activation function c1 achieved the
best performance in each metric across all mean values,
suggesting this is the appropriate activation function to use.
The increase in false positive rate with c2 and c3 suggests
that these activation functions encapsulate features common
to both cough and non-cough events after SVD.

Table III highlights a best-case scenario which includes
the metrics for each test signal and the associated activation
function that achieved this result. For the majority of results,
c1 produced the best case which aligns well with the results
from Table II. For signal #3 an #5, the activation functions
that achieved the most desirable results are c3 and c2,
respectively. Assuming that the appropriate time-activation
functions are used, an improvement in the mean true positive
ratio and false positive rate is observed.

In Table I the performance of the proposed approach
using ISA is presented and compared against several existing
approaches in the field of cough detection, using reported
values of the same metrics from (5). In some publications,
these metrics were not reported by the original authors.
Entries where this is the case have been labelled with NR for
“not reported”. Comments have also been provided on other
existing approaches to highlight important aspects such as the
requirement of training data and whether metrics are based
on event level or frame level analysis, for example.
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TABLE I
CROSS-COMPARISON OF COUGH DETECTION ALGORITHMS ON THE METRICS USED TO EVALUATE THE PROPOSED APPROACH. NR USED WHERE

RESULTS WAS NOT REPORTED BY THE AUTHORS, NAMELY THE TRUE POSITIVE RATIO rTP AND FALSE POSITIVE RATE RFP .

Algorithm Training rTP RFP Comment
Required? (%) (min−1)

Independent subspace analysis (our approach) No 76.00 2.85 Metrics are based on cough events and training
a model before testing is not required.

Hull automatic cough counter (HACC) [7] Yes 80.00 NR Semi-automatic approach to cough counting.

HMM (Leicester Cough Monitor) [8] Yes 71.00 0.22 Average results presented, semi-automatic
algorithm that requires user input.HMM (Leicester Cough Monitor) [10] 91.00 0.04

Spectral energy thresholds [11] No NR NR Results presented highlight the reduction in
data to be manually analysed.

Eigenvalue decomposition and random forest classifier [12] Yes 92.00 0.28 Cough model generated using training data and
PCA. Average results reported.

TDNN and spectral features (event level) [14] Yes 92.80 NR Based on a frame-by-frame and event level.
Definition of true negative is not stated.TDNN and spectral features (frame level) 83.70 NR

Hu moments - synthetic recording and k-NN [13]

Yes

82.49 NR
Statistics are calculated on a frame-by-frame
basis.

with synthetic recording and SVM 62.83 NR
with ambulatory table-top recording 87.43 NR
with ambulatory pocket recording 81.83 NR

STFT and CNN [15] Yes 86.88 NR Reported results represent the best performance
under the best-case scenario.STFT and RNN 87.70 NR

GFCC and spectral sub-band features (synthetic data) [16] Yes 81.38 NR Analysis carried out on sub bands using GFCC
and SVM classifier. Average results calculated
on a frame leve at SNR of 0dB.

with weighted voting (real data) 76.43 NR
with weighted voting and first derivatives (real data) 78.60 NR

TABLE II
SUMMARY OF RESULTS FROM ALL CANDIDATE TIME-ACTIVATION

FUNCTIONS (c1 , c2 , AND c3) SHOWING THE MEAN RESULTS ACROSS ALL

TEST SIGNALS.

c rTP (%) RFP (min−1) T (min)

1 76.00 2.85 0.73
2 67.00 4.17 0.92
3 39.00 6.26 1.17

TABLE III
A BEST-CASE SCENARIO REPRESENTATION OF THE RESULTS, WHERE c

IS THE cth ACTIVATION FUNCTION, rTP IS THE TRUE POSITIVE RATIO,
RFP THE FALSE POSITIVE RATE, AND T IS THE SUMMARISED SIGNAL

DURATION.

# c rTP (%) RFP (min−1) T (min)

1 1 70 4.5 0.98
2 1 90 3.4 0.87
3 3 95 1.4 0.55
4 1 100 4.00 1
5 2 100 0.6 0.43
6 1 90 2.2 0.67
7 1 95 0.5 0.4
8 1 90 6.7 1.42
9 1 95 3.6 0.92
10 1 100 1.2 0.53

Mean 92.50 2.81 0.77

IV. DISCUSSION

From the results presented here, ISA has shown to be a
reliable method for detecting the presence of cough sounds
in audio recordings. A summary of the results from all
candidate time-activation functions (c1, c2, and c3) showing
the mean results across all test signals is provided in Table II.

The first time-activation function, c1, returned the best
overall results with a true positive ratio of 76 %, false positive
rate of 2.85 per min. In the case of the true positive ratio,
the values obtained by the proposed algorithm outperform
those reported in [8] with 71 % and in [13] of 62.83 % with
synthetic recordings and a SVM classifier. In the analysis of
real data in [16], the results are comparable where values
of 76.43 % and 78.60 % were obtained (see Table I). Per-
formance reduced slightly in the remaining candidate time-
activation functions (c2 and c3), returning lower true positive
ratio and higher false positive rates as less cough events were
correctly identified and more false detections were made.

A best-case scenario is presented Table III. It can be seen
that the majority of cough sounds are accurately detected
within a single time-activation function, c1 in this case, which
supports the use of kurtosis as a suitable statistical measure
for determining which activation function to use to achieve
the most desirable results. On average, kurtosis produces the
best activation function to use as shown in Table II. The mean
results can be improved by selecting the time-activation func-
tion containing the coughs manually. An automatic method
of determining which activation functions could be used to
complement this algorithm and improve overall results, as
shown by the mean calculations in Table III. This would
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improve the proposed algorithm’s performance by accurately
detecting cough events to 92.50 %, outperforming several of
the best performing approaches presented in Table I.

The false positive rate of the proposed algorithm could not
be compared directly with a large number of the algorithms
presented in Table I as this metric was not explicitly reported
by authors in several cases. Where it can be compared (see
[8], [10], [12]), the previous approaches have outperformed
the false positive rate of 2.85 per minute. A possible reason
for the lack of reporting on this performance metric in pre-
vious approaches is the decision to use frame-level analysis
of cough events as opposed to event-level analysis.

An important point that should be noted about our pro-
posed approach is that the algorithm does not require a
large amount of training data or a training stage for a neural
network, for example. All of the approaches listed in Table I,
apart from one, require a training step for the algorithm to
detect coughs on a frame-level or event-level. The proposed
algorithm here leverages on the repeating nature of the cough
sound in the ambulatory recording and does not require an
intensive training stage with a large dataset.

V. CONCLUSIONS

Building on an approach used for automatically tran-
scribing drum sounds, the proposed algorithm uses ISA for
detecting the presence of an individual’s cough within audio
recordings, reducing the human effort required by medical
staff to identify cough events within long recordings.

An average true positive ratio of 76 %, and a false pos-
itive rate of 2.85 false positives per minute was achieved,
with a significant reduction in the duration of signals. This
algorithm’s ability to detect cough sounds is evident, and
a reduction in false positives will improve the overall per-
formance. A solution to consider in future work utilises
multiple analysis windows during the SVD stage, taking
advantage of the varying spectral characteristics observed
during different phases of a single cough event. Also planned
is a more detailed comparison against other state-of-the-art
cough-detection approaches.
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