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Abstract— Step length is a critical gait parameter that allows
a quantitative assessment of gait asymmetry. Gait asymmetry
can lead to many potential health threats such as joint degener-
ation, difficult balance control, and gait inefficiency. Therefore,
accurate step length estimation is essential to understand gait
asymmetry and provide appropriate clinical interventions or
gait training programs. The conventional method for step length
measurement relies on using foot-mounted inertial measure-
ment units (IMUs). However, this may not be suitable for
real-world applications due to sensor signal drift and the
potential obtrusiveness of using distal sensors. To overcome this
challenge, we propose a deep convolutional neural network-
based step length estimation using only proximal wearable
sensors (hip goniometer, trunk IMU, and thigh IMU) capable
of generalizing to various walking speeds. To evaluate this
approach, we utilized treadmill data collected from sixteen
able-bodied subjects at different walking speeds. We tested our
optimized model on the overground walking data. Our CNN
model estimated the step length with an average mean absolute
error of 2.89 ± 0.89 cm across all subjects and walking speeds.
Since wearable sensors and CNN models are easily deployable
in real-time, our study findings can provide personalized real-
time step length monitoring in wearable assistive devices and
gait training programs.

Index Terms— Step Length Estimation, Wearable Sensor,
Convolutional Neural Network, Gait Analysis

I. INTRODUCTION

Gait asymmetry, irregular behaviors of bilateral limbs
during walking, can lead to many potential risks to our
health. Persisting asymmetric gait could repetitively apply
higher forces to a particular leg and cause uneven load
distributions, which can lead to degenerative joint diseases,
risks of falling, and inefficient energy expenditure [1]–
[3]. To prevent potential health damages, it is essential to
identify the existence of gait asymmetry. Step length, in
particular, is a very important spatial gait parameter for
gait asymmetry assessment. Individuals with asymmetric gait
typically show high variability in step length [4]. Measuring
the variability in step length allows us to understand the
walking mechanism and underlying impairment [5], [6], and
therefore informs us if preventative clinical interventions or
rehabilitation efforts need to be sought. Restoration of step
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length symmetry can greatly contribute to the reduction in the
metabolic cost of walking. This has important implications
in designing rehabilitation programs as well as innovative
healthcare technology such as assistive wearable devices
because lower-limb wearable devices are also challenged by
the motivation to minimize the metabolic cost of walking
[7]–[9]. To allow such applications, it is critical to enable
accurate and efficient step length estimation.

A common method is to use a foot-mounted inertial
measurement unit (IMU) [10]. Because IMU cannot directly
measure step length, step length needs to be estimated
by computing double integration of the acceleration data
from IMU. However, this approach is very sensitive to the
accumulation of drift. To alleviate this problem, a zero
velocity update algorithm (ZUPT) is typically used to reset
the integrated velocity to zero whenever the foot is stationary.
As ZUPT works according to the foot movement, IMU
placement on the foot is considered necessary for step length
estimation. However, IMU placement in a distal area creates
the need to have additional wires, which can potentially
hinder the user’s movement. To minimize such obtrusiveness,
a more viable solution is to place the IMU on proximal body
segments such as the trunk or thigh. This approach can also
allow wearable devices that do not have distal interfaces,
such as hip exoskeletons, to estimate step length.

Nevertheless, IMU and ZUPT still have a huge drawback
because they do not work properly in dynamically changing
walking environments [11]. A possible solution to mitigate
the limitations is to incorporate machine learning-based (ML)
step length estimation. Among different ML approaches, a
convolutional neural network (CNN) has shown very promis-
ing results due to its success in feature learning and often
brings performance gain compared to hand-crafted feature
extraction [12]. Sharifi Renani et al. showed that a CNN
model can help overcome the sensor placement dependency
for IMU-based spatial-temporal gait parameter estimation
[13], and Hannink et al. demonstrated that their CNN models
performed better than the IMU-based double integration
method in geriatric gait analysis [14].

While these studies prove the feasibility of implementing
CNN for gait parameter estimation, they do not focus on
demonstrating a CNN model’s generalizability to different
speeds. Therefore, we propose a deep CNN-based step length
estimation method that is capable of adapting to dynamic
speeds, using proximal wearable sensors. This proposed
method will help translate step length monitoring to more
realistic settings since our CNN model eliminates the ob-
trusiveness of distal sensors as well as potential cumulative
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errors caused by IMU integration.
Our hypothesis is that by using the treadmill data collected

at different speeds, the CNN model can learn to adapt to
changing walking environments. Utilizing a treadmill allows
us to simplify the experimental procedures and achieve great
efficiency because treadmills can be easily and safely con-
trolled to provide a variety of possible overground walking
speeds. To test our hypothesis, we evaluated the performance
of our model using the overground data, which represents
realistic free-walking conditions. We also compared our
CNN model with a mathematical estimation method, which
estimates step length by calculating the average step length
across all overground walking speeds for each subject. The
main objective of our study is to validate the feasibility of
implementing a deep CNN model to accurately estimate step
length in dynamic conditions. Our study findings can be used
to provide customized real-time step length monitoring in
assistive wearable devices and gait rehabilitation programs,
and therefore improve the step length estimation to be more
applicable in real-world settings.

II. METHODS

A. Step Length Dataset

Our study utilized a publicly available open-source dataset
collected by our group [15], in which sixteen healthy young
individuals (age of 22.13 ± 3.92 years, height of 1.70 ±
0.07 m, and body mass of 68.38 ± 11.84 kg) were asked
to walk on a treadmill and overground. The treadmill data
were recorded at different speeds ranging from 0.5 m/s to
2.05 m/s with increments of 0.05 m/s, and each speed was
held for 30 seconds. For the overground data, subjects were
asked to walk on a ground terrain at their three different
preferred walking speeds: slow, normal, and fast. Within the
overground trial data, only the steady-state walking data were
used in this study. Both treadmill and overground data were
collected with a 36-camera Vicon motion capture system
(Oxford Metric, Oxford, UK). The 200 Hz motion capture

Fig. 1. (A) Locations and types of simulated bilateral sensors. (B)
Placement and x, y, z axes definition of the Vicon heel marker. (C)
Illustration of the analyzed spatial gait parameter: step length.

marker data were filtered with a zero-lag low-pass filter with
a cutoff frequency of 6 Hz.

Conventionally used mechanical sensors for wearable
robotics are the joint encoder and the inertial measurement
unit (IMU). To simulate these sensors for our dataset, we
used the open-source modeling software, OpenSim V4.1.
We used the Inverse Kinematics Tool to generate the users’
joint kinematics data representing the hip goniometer (GON)
along the sagittal plane. Additionally, we utilized motion
capture marker position to determine the 6-axis IMU data
(local acceleration and angular velocity of corresponding
limb segment). During this sensor data generation, we gen-
erated two GON for bilateral hip joints and three IMUs for
each limb segment (trunk and thigh) (Fig. 1A) to use for
training and testing our CNN model. Using this sensor fusion
approach, comprehensive information about the user’s gait
patterns can be provided to the CNN model [16].

Each step event was defined at heel strike, which was de-
tected at 0% of the gait phase of each foot. When segmenting
steps from the treadmill data, we discarded steps that were
performed at speeds below 0.5 m/s during treadmill starting
and stopping. From all sixteen subjects, a total of 29867
steps were obtained from the treadmill data, and 5846 steps
from the overground data were obtained. The average step
length of the treadmill and overground data was 60.85 ±
3.21 cm and 62.23 ± 5.59 cm, respectively. These values
represent the mean ± standard deviation across sixteen
subjects. The ground truth for step length was determined
using the heel marker locations, extracted from Vicon motion
capture system. Step length was defined as the distance
between z coordinates of the left and right heel markers at
each step event (Fig. 1B and C).

B. Model Optimization

We developed a user-dependent model using data that was
specific to the subject. Our model was trained offline for a
maximum of 1000 iterations with a batch size of 64. To
avoid overfitting of the user-dependent models, early stop-
ping criteria was used to terminate training if the validation
loss did not continue to decrease [17]. Within user-specific
data, 5-fold validation was performed to better evaluate the
performance of the model.

Our deep CNN architecture consists of four 1-dimensional
convolutional layers, a 1-dimensional average pooling layer,
and two fully connected layers (Fig. 2). For the first two
convolutional layers, the channel dimensions increase be-
cause scaling up dimensions is effective for capturing more
fine features [18]. Each convolutional layer is followed
by batch normalization and rectified linear unit (ReLU)
activation function to optimize training. The 1-dimensional
pooling layer is added before the fully connected layers to
summarize and down-sample the feature maps by taking the
average in non-overlapping windows [12]. The output of the
pooling layer is flattened to a fully connected layer. After
the first fully connected layer, the number of hidden nodes
is decreased by half for model compression. Lastly, the final
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Fig. 2. Convolutional Neural Network-based step length estimator. Raw sensor data generated by IMU simulation using OpenSim is directly fed to the
input layer. Each hidden node of the fully connected layers is followed by the ReLU activation function. The output node produces step length estimation.

layer transforms the last hidden layer to a single output for
step length prediction.

The input sequence length was fixed at 300ms, which
was selected to fit the minimum step time between two
consecutive heel strikes. This prevented any overlap between
data from consecutive steps, meaning there was no signal
information “leakage” from the previous steps. The mean
squared error (MSE) was selected for the loss function,
and Adam with decoupled weight decay (AdamW) with
a learning rate of 0.001 was used for optimization [19].
Loshchilov and Hutter proposed that AdamW is much better
at generalization than Adam, and AdamW performs espe-
cially well when combined with a learning rate schedule.
Hence, during training, AdamW was applied with a “plateau”
learning scheduler which reduced the learning rate when
the validation loss stopped decreasing. The network was
implemented and trained using PyTorch library.

C. Model Validation

Using the overground data, we tested our offline user-
dependent model. The overground data was specific to the
same subject who provided the training data. Since the over-
ground data covers a wide range of possible natural walking
speeds, it allows us to validate if the model is capable of
generalizing to different situations where the user is accel-
erating or decelerating. To better evaluate the performance
of the CNN model, the mathematical estimation approach
was implemented as a baseline model to draw comparisons
between them. The baseline model defines its step length
estimation by calculating the average step length across
all overground walking speeds for each subject. The mean
absolute error (MAE) and the mean absolute percentage
error (MAPE) were computed between the ground truth and
the prediction from the two models to evaluate the overall
estimation performance. Additionally, we have conducted a
statistical analysis on our model performance with an alpha
value set to 0.05. A two-way repeated measures analysis of
variance (ANOVA) was used to find significant differences
across conditions (MATLAB R2020b, Mathworks). Lastly,
post hoc multiple comparisons with a Bonferroni correction
were used to compute a pairwise differences.

TABLE I
STEP LENGTH ESTIMATION PERFORMANCE OF THE TWO PROPOSED

MODELS ACROSS ALL SUBJECTS AND SPEEDS.

Error Measure Baseline CNN

MAE ± STD (cm)1 6.59 ± 1.63 2.89 ± 0.89
MAPE ± STD (%)2 11.17 ± 2.18 4.70 ± 1.18

1 Mean absolute error ± standard deviation
2 Mean absolute percentage error ± standard deviation

III. RESULTS

Across all subjects and speeds, the CNN model on average
reduced the estimation error rate relative to the baseline
model by 52.24 ± 20.01% (p < 0.05) (Table 1).

Fig. 3. MAE comparison between the baseline model and the CNN model
at different preferred speeds across all subjects. The error bars represent
± 1 standard error of the mean (SEM) and asterisks indicate statistical
significance (p < 0.05).

The CNN model resulted in an average MAE of 2.79
± 1.20cm, 2.81 ± 1.07 cm, 3.07 ± 1.12 cm, whereas
the baseline model resulted in an average MAE of 6.38 ±
1.80cm, 4.87 ± 1.21cm, 8.52 ± 2.93cm at slow, normal, and
fast walking speed, respectively (Fig. 3). The CNN model on
average reduced the MAE compared to the baseline model
by 54.15 ± 19.23%, 41.01 ± 19.97%, and 61.59 ± 14.69%
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at slow, normal, and fast walking speed, respectively (p <
0.05). The baseline model performance was worse at fast
walking compared to slow and normal walking (p < 0.05).
There were no significant statistical differences between the
CNN model performances across three walking speeds.

IV. DISCUSSION AND CONCLUSION

Our study introduced and validated a novel CNN model,
able to estimate step length within 2.89 ± 0.89 cm using
proximal wearable sensors during overground walking at
varying speeds. Not only did the CNN model outperform
the baseline estimate by 52%, but it also generalized well
across all tested walking speeds. This result corresponds to
our hypothesis that a CNN-based approach can successfully
adapt to dynamic walking speeds.

A literature study by Sharifi Renani et al. used a similar
approach to our study and presented relevant results [13].
Sharifi Renani et al. showed the average normalized absolute
percentage error (NAPE) of all sensor combinations for step
length estimation was 8.0 ± 4.32 %. The NAPE is defined
as the absolute error divided by the mean of the labeled
test data. Moreover, the study reported that the NAPE was
higher at fast walking (17.6%), compared to slow and normal
walking (15.8%) across 12 different spatial-temporal gait
parameter estimations. Although we cannot make a direct
comparison due to using different sensors and a different
error measurement from their study, our CNN-based model
accurately estimated step length with an average MAPE of
4.70 ± 1.18% (Table 1) which overcame the challenge of
making estimation in varying walking speeds.

There were several limitations to this study that should be
considered: 1) The CNN model was trained on a user-specific
basis. Even though a user-dependent model can provide bet-
ter “customized” estimation than a user-independent model,
the user-dependent approach has limitations in generalizing
to a novel user, and therefore may not be optimal for
real-world applications. To mitigate this, a transfer learning
approach can be explored, where the baseline model can
adapt to a novel user using additional data inherent to the
user’s gait patterns. 2) Since the model was trained and tested
offline, our study did not explore if the model is capable of
performing accurate real-time step length estimation. 3) Our
study only investigated step length estimation during steady-
state walking and did not consider situations where the user
might be changing directions.

In future work, we want to address the feasibility of
using a user-independent CNN model with turning phases
for step length estimation. Online testing should also be
performed to better evaluate its real-life applicability. This
will expand the ability of the CNN model to handle more
realistic human movements. For this study, we chose a simple
mathematical approach as the baseline to compare our model
performance across different walking speeds. Future work
can use a more robust analytical approach (e.g., foot-mounted
IMU-based estimation) as the baseline to fully evaluate
the advantage of leveraging deep learning for step length
estimation. These improvements will provide great potential

for enabling personalized real-time step length monitoring in
wearable assistive devices and rehabilitation programs.
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