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Abstract—An Automatic deep learning semantic seg-

mentation (ADLS) using DeepLab-v3-plus technique is 

proposed for a full and accurate whole heart Epicardial ad-

ipose tissue (EAT) segmentation from non-contrast cardiac 

CT scan. The ADLS algorithm was trained on manual seg-

mented scans of the enclosed region of the pericardium 

(sac), which represents the internal heart tissues where the 

EAT is located. A level of 40 Hounsfield unit (HU) and a 

window of 350 HU was applied to every axial slice for con-

trast enhancement. Each slice was associated with two ad-

ditional consecutive slices, representing the three-channel 

single input image of the deep network. The detected out-

put mask region, as a post-step, was thresholded between 

[-190, -30] HU to detect the EAT region. A median filter 

with kernel size 3mm was applied to remove the noise. Us-

ing 70 CT scans (50 training/20 testing), the ADLS showed 

excellent results compared to manual segmentation 

(ground truth). The total average Dice score was 

(89.31%±1.96) with a high correlation of (R=97.15%, p-

value <0.001), while the average error of EAT volume was 

(0.79±9.21). 

 
Clinical Relevance— Epicardial adipose tissue (EAT) volume 

aids in predicting atherosclerosis development and is linked to 

major adverse cardiac events. However, accurate manual seg-

mentation is considered tedious work and requires skilled exper-

tise. 

I. INTRODUCTION 

Epicardial adipose tissue (EAT) is a visceral fat deposit dis-

tributed between the pericardium and the heart [1], [2]. Epi-

cardial fat tissue can be detected by CT and can be broadly 

defined as tissue within the pericardial sac with signal inten-

sity in the fat tissue range (-190 to -130 HU). With careful 

detection, cardiologists and radiologists can distinguish the 

pericardium, the sac that enclosed the heart, in non-enhanced 

CT images and identify the EAT volume by thresholding the 

internal heart region. However, manual segmentation for EAT 

in a non-contrast-enhanced CT is a time-consuming task even 

for expert radiologists. Pericardial tissues are often difficult to 

distinguish in cardiac CT scans due to the thin layer of the 
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pericardium and the low contrast from surrounding tissues 

and blood [3].  

There are previous reports using deep learning. Comman-

deur et. al [4], proposed a fully automated approach with two 

Convolutional Neural Networks (CNNs) to segment EAT and 

thoracic adipose tissue (TAT). The first CNN detects the heart 

limits and performs segmentations while the second combines 

a statistical shape model to detect the pericardium. The study 

showed a Dice score of 82.3% with a correlation coefficient 

for automatic vs. manual R=92.4%, for 250 non-contact CT 

images. Commandeur et. al [5], presented a fully automatic 

CT multicenter study to segment and quantify EAT using 

CNN. The proposed method uses a single CNN in two tasks: 

slice classification and slice segmentation. The classification 

was meant to recognize whether the slice belongs to the heart 

or not, while the EAT is segmented in the second task. The 

method uses three slices as an input patch: the designated slice 

(𝑘), one prior (𝑘 − 1), and one post (𝑘 + 1), while the output 

is the manual EAT labeling for the middle slice (𝑘). With a 

dataset of 614 CT non-contrast scans, the method achieved a 

Dice score of 87.3%, while the correlation coefficient was 

R=97.4%. Motivated by these three consecutive slice ap-

proaches, we concatenate our input patches in three slices, the 

designated one (𝑘), with two followed slices (𝑘 + 1, 𝑘 + 2), 

while the output is the enclosed area of the labeled sac and 

internal heart tissues of the designated slice (𝑘), preventing a 

scenario where there is no segmented fat in the first slice of 

the CT volume. He et. al [6], proposed a 3D deep attention U-

Net for segmenting the EAT for 40 CTA images. The high 

number of slices (with thin slice thickness in CTA images) 

with an input size of 512×512×32 made it possible to use a 

3D deep network, which is not the case in a thick slice non-

contrast CT, as in our experiments. However, the method 

showed a Dice score of 85%. He et. al [7], extended their 3D 

deep attention U-Net study for CTA images to include 200 

patients, which showed an improved Dice score of 88.7%. 

In the manual segmentation process, a preprocessing step 

is performed for all axial slices to prepare the input patches 

and enhance the training performance. A window/level of 

[level =40HU, window=350HU] and noise median filter, are 

applied to each raw CT volume to enhance the contrast of the 
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pericardium tissues. Each 2D slice input (𝑘) is associated with 

its consecutive two slices (𝑘 + 1, 𝑘 + 2), forming a 

512×512×3 voxels input patch while the output is the 2D 

manually labeled mask of the 𝑘 slice only.  

In this paper, we investigate multiple potential improve-

ments to EAT segmentation. We used window-level to pre-

process the data and draw attention to the range of CT num-

bers of interest. In experiments, we compared results with and 

without the windowing operation. We investigated the role of 

multiple types of data augmentations (e.g., blur to mimic mo-

tion, rotation, and scaling to estimate different patients’ char-

acteristics). Image volumes are 512×512 pixel axial images 

with 40 to 60 image slices. We used 512×512×3 “slab” 

patches as the inputs input to the deep network. The outputs 

of the deep learning network are binary masks classifying 

each pixel either inside or outside the pericardium region as 

shown in Fig. 1. We also investigated different deep learning 

techniques (e.g., U-net and SegNet) and compared results. 

Corresponding EAT volume, Dice score coefficient, Intersec-

tion Over Union (IOU) score are calculated to evaluate the 

segmentation performance. Scatter and Bland-Altman plots 

with correlation coefficient (R) are presented to understand 

the association between manual vs. automatic segmentations 

per patient and per slice. 

The experiments involving human subjects described in 

this paper were approved by the University Hospitals Institu-

tional Review Board. 

II. THE PROPOSED METHOD 

Similar to manual segmentation, preprocessing steps are 

performed to prepare input patches for the training process 

and enhance the performance of the network, as shown in Fig. 

2. A window/level with a level of 40 HU and a window of 350 

HU is firstly applied for each input image to increase the con-

trast of the pericardium, encouraging the deep learning net-

work to easily capture common contrasted pericardium struc-

tural features. Each 𝑘 labeled image is concatenated with its 

consecutive two slices (𝑘 + 1 and 𝑘 + 2) to generate a 

512×512×3 input voxel patch. This concatenation process, on 

one hand, enriches the surrounding pericardium structures to 

assist the deep learning network in identifying common fea-

tures of the sac. On the other hand, this process trains the deep 

network on the ascending curvature of the sac (as seen in the 

sagittal view). Intuitively, promoting a unified phenomenon 

in the input images, hence improving the training perfor-

mance, a 3-consecutive method is applied to maintain the cur-

vature of the sac. The output mask is the mask of the first slice 

of each three-consecutive input patch, which we labeled as the 

entire internal region of the heart tissues beyond the pericar-

dium (sac) contour. Although the manual segmentation con-

sidered the sac as the reference to distinguish the EAT from 

other heart surrounding fats, the deep learning segmentation 

performs more accurately with larger regions. Sac contours 

alone represent an imbalanced ratio when it comes to the num-

ber of labeled vs. non-labeled voxels. Using the “beyond sac” 

region enriches the deep learning with a balanced number of 

voxels, hence improves training. The structure of the prepro-

cessing steps and the full automatic training structure is pre-

sented in Fig. 2.  

We implemented our deep network model by using transfer 

learning based on the DeepLab-v3 plus [8] (Resnet-18 as a 

backbone). The deep network model is a CNN specifically 

designed for semantic segmentation tasks, which is mainly 

composed of several important architectures: the backbone 

network, the Atrous convolution, the Atrous Spatial Pyramid 

Pooling (ASPP) network, and the decoder section. Traditional 

deep CNN has a tendency to reduce the spatial resolution of 

the output feature map as the network goes deeper, and thus 

is not suitable for semantic segmentation tasks, which require 

detailed spatial information. In contrast to CNN, the 

DeepLab-v3 plus applied Atrous convolution, which can ad-

just the effective field of view for convolution without reduc-

ing the size of the output feature map, in the last few blocks 

of the backbone network. Thus, Atrous convolution can ex-

tract denser features at multiple scales while preserving the 

spatial resolution, which is significant for semantic segmen-

tation. The ASPP is used on the top of the feature map to cap-

ture multi-scale object information by applying four parallel 

 
Fig. 1. The expert manual segmentation process of the EAT is illustrated in a step-by-

step example. Each 2D axial slice is examined from expert reader as in (A). A window 

with a level of 40HU and a width of 350 HU was firstly used for each input image to 

increase the contrast of the pericardium (B). The pericardium (SAC) can be noticed in 

the inferior region from axial view and sometimes from sagittal view (C). Expert reader 

draws a contours to distinguish the pericardium and the EAT tissues are recognized as 

the interior voxels that has fat tissues located inside the contour with thresholding of [-

190, -30] as in (D). 
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Fig. 2. The full structure of the automatic EAT segmentation training process and the 

preprocessing steps are illustrated. A window leveling of level of 40 HU and window of 

350 HU is shown in (A), then concatenating each slice 𝑘 with the following (𝑘 + 1,  𝑘 +
2) slices to represents the three channels of the training input patches for the deep net-

work, as in (B). Different data augmentations are meant to enrich the deep learning with 

variations of cases, is also shown in (C). Finally, the DeepLab-v3 plus network is trained 

with each three sequenced patches with single corresponding mask slice as in (D). 
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Atrous convolutions with different sampling rates. Batch nor-

malization and image-level features are also incorporated in 

the ASPP by applying a global average pooling at the last fea-

ture map of the backbone and concatenating the correspond-

ing results (contains multi-scale features) with batch normal-

ization [8]. The results are then traversed through a 1×1 con-

volution with 256 filters to get the final output. Furthermore, 

a decoder section has been added to gradually recover the spa-

tial information, hence capturing more detailed boundary fea-

tures, by applying a few 3×3 convolutions to refine the output 

features obtained from the ASPP with an upsampling factor 

of 4 [8]. As a post-processing step, the output of the deep net-

work is used as a mask to detect the EAT region. Similar to 

manual segmentation, we apply noise reduction (3×3×3 me-

dian) to reduce artefacts in these low-dose images. We then 

apply standard fat thresholding [-190 HU, -30 HU] to identify 

EAT volume within the pericardial sac. The complete prepro-

cessing, augmentation, and training are presented in Fig. 2. 

For the training setting, similar to a prior approach [5], the 

Adam method is used for optimization and the Dice loss is 

applied as the loss function to maximize the Dice score coef-

ficient. The Dice loss is the cost function used to evaluate the 

similarity between the resulted mask and the ground truth 

mask. To enrich the training process, random augmentations 

are applied during training. Random rotation (-5 to 5 degrees), 

scaling (0.9 to 1.1), and Gaussian blurring with a standard de-

viation set to (𝜎 < 2) are applied for data augmentation. We 

use a mini-batch strategy with a batch size of 20, while the 

max number of epochs is set to 30 and the initial learning rate 

is set to 1e-3. Validation is performed at the end of each 

epoch. Our proposed deep learning method is further investi-

gated with different experiments as will be illustrated in the 

next section. 

III. EXPERIMENTAL RESULTS 

A. Dataset and Segmentation Metrics 

This study utilized 70 non-contrast cardiac CT scans done 
for calcium scoring, which was obtained from the University 
Hospital of Cleveland. The axial slice thickness was 2.5 mm 
and the 2D slice dimensions were 512×512 pixels per axial 
slice. A total of 2291 axial slices were used in this study. The 
dataset was first divided into two subsets: training and testing 
subjects (50 training/20 testing). Subjects for training were 
then divided into two subsets: training subset (80%) and vali-
dation subset (20%). 

The Dice score coefficient was calculated between the au-
tomatic method testing output and the ground truth (manual 
segmentation) to evaluate the performance of the semantic 
segmentation. 

           𝐷𝑖𝑐𝑒(𝑋, 𝑌) =  
2 ∗ |𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
,                               (1)  

where, 𝑋 and 𝑌 represent the testing output and the ground 

truth pixels in a slice (or voxels in a volume),  |𝑋 ∩ 𝑌| is the 

number of overlapping pixels (or voxels) between the pre-

dicted EAT segmentation and the ground truth EAT images, 

while |𝑋| + |𝑌| represents the total number of pixels (or 

 
1 https://www.slicer.org  

voxels) in both images  (or volumes). We also calculate the 

Intersection Over Union (IOU) score, also known as the Jac-

card Index, which represents the ratio of the overlapped be-

tween the automatic and ground truth area region over all the 

area of the union region. 

        𝐼𝑂𝑈(𝑋, 𝑌) =  
|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|
  .                        (2) 

In addition to evaluating the Dice score coefficient and 
IOU, we compared the automatic EAT volumes collected by 
the automated method with manual reader segmentation for 
each test subject. Scatter and Bland-Altman plots were per-
formed for every testing subject, as well as, every slice to eval-
uate the agreement between the predicted results and the 
ground truth. The correlation coefficient (𝑅) and its corre-
sponding 𝑝-value were calculated to assess the scatter plots, 
while a 95% confidence interval had been established within 
1.96 times the standard deviation for the Bland-Altman analy-
sis. 

B. Results and Discussions 

The deep learning experiments in this study were per-
formed using a Windows 10 computer with an AMD Ryzen 7 
5800X 3.8GHz, 32 GB RAM, 1TB hard disk, GTX 3090 with 
24GB GPU. We implemented the code using Matlab 2021a. 
The manual segmentations were implemented in regular com-
puters using Slicer 3D software, Version 4.111 and the results 
of manual labeled volumes are saved in DICOM files for an 
easy association with the original CT volumes.  

 To perform the automated EAT segmentation, we used 
transfer learning based on DeepLab-v3 plus. For comparison 
purposes, the input patches were organized in sequence. The 
heart input patches are sequentially fed from bottom to top 
with three consecutive slices for each patch. We investigated 
three experiments using our deep network model: without us-
ing window leveling (without WL), without using blur aug-
mentation (noBlur), and with window leveling (WL, our pro-
posed approach). Using 70 CT scans (50 training/20 testing), 
the deep network using window leveling showed superiority 
in Dice results compared to the network with other two exper-
iments in 18 test cases out of the 20 test cases (90%), as shown 
in Fig. 3. The total average Dice scores per subject for the pro-
posed approach (with window leveling) was 89.31% (ranged 
from 85.03% to 91.47%) while for the withoutWL approach 

 
Fig. 3. A Dice score comparison is shown for the EAT segmentation of 20 patients. The 

proposed method was individually trained using either, without window leveling, with-

out Blur, and with window leveling. The mean dice scores were (85.17%±3.2, 

85.95%±3.14, and 89.31%±1.96), respectively. The window leveling provides a higher 

segmentation results in 18 out of 20 patients over the other two experiments. 
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was 85.17% (ranged from 79.28% to 92.81%), and for the no-
Blur approach was 85.95% (ranged from 79.91% to 93.95%). 
Using the same deep learning structure (DeepLab-v3 plus), 
keeping the same preprocessing steps, and same testing set, 
while changing the way of representing the input data, the Dice 
score results tipped the scale of the window leveling experi-
ments over others. The idea of maintaining the increasing cur-
vature of the three consecutive slices for each input gave the 
deep network more ease to intelligently detect the sac bound-
aries for the associated slices. Looking at a special case-patient 
No. 15, the Dice score for without window leveling was 80% 
while for noBlur it was 79.8%. However, using window level-
ing improved the Dice score up to 88.2%, where we can see 
the effect of window leveling in emphasizing the sac structure 
for the deep network segmentation. 

The deep network is capable of training colorful images 
(three channels of RGB), however, the CT images are gray-
scale images (single channel). We embedded three-consecu-
tive slices in the deep network input slab instead of repeating 
the same slice in the three channels. This approach provides 
the deep network with more structure of the sac region. Com-
pared to manual segmentation, experts look into adjacent 
slices when the current slice’s sac is ambiguous. We picked 
the sequence of the adjacent slices to be the two consecutive 
(𝑘 + 1, and 𝑘 + 2) ones to the labeled one (𝑘), as we start from 
the bottom of the heart where the first slice has only consecu-
tive slices that have sac.  

Fig. 4. illustrates three test individuals of manual vs. auto-
matic (proposed) EAT segmentation results for CT axial slice 
heart region. The three initially unlabeled slices are shown in 
A, E, and I, respectively. The manual expert labeled slices are 
shown in blue in B, F, and J, respectively. The automatically 
labeled slices are shown red in C, G, and H, respectively. 
While the manual and automatic are combined in D, H, and L, 
respectively, with white as the agreement (overlapping) area, 
blue as the manual only, and red as the automatic only. These 
subfigures show that the automatic method presents a high 
agreement with the manual labeling for the untrained test sam-
ples, except for some very narrow edges which we strongly 
believe that expanding the training dataset will much improve 
the training of our model.    

Total individual EAT volume assessment is considered the 
most important outcome that clinicians look for in EAT eval-
uation. In this paper, we provided two helpful assessments for 
the EAT volumes: total per patient and total per slice volume 
assessments. In a total patient’s EAT volume assessment, each 
test full CT automatic EAT segmentation EAT volume is com-
pared to its corresponding manual labeled using scatter plot 
and Bland-Altman plot, as shown in Fig. 5.A and Fig. 5.B, re-
spectively. The scatter plot showed a correlation (R=97.15%, 
p-value <0.001). Likewise, the Bland-Altman plot provided a 
smaller bias of 0.32 cm3 and narrower quartile range of [-
23.85, 24.49] cm3. These results are due to a small cohort, 
which included small to large EAT volume, the noise, and the 
unclear sac tissues in some slices. And they can be improved 
more with a larger cohort for the training subjects. 

In EAT slice-based study, which - to our knowledge - none 
have investigated before this paper, provided a detailed per 
slice segmentation evaluation. Since the deep network is trying 
to learn the EAT per slice, this study shows the regions where 
the network suffers from in quartile grouped slices. We 
demonstrate the automatic results compared to manual test la-
bels in scatter and Bland-Altman plots in Fig. 6.A and Fig. 6.B, 
respectively. The slices of each test case are categorized into 
four equal regions based on their location in the total heart slice 
sequence. These regions are presented in colors as: blue for 
slices in the bottom 25%, red for the slices between 25%-50%, 
yellow for the slices between 50%-75%, and blue for slices in 
the top 25%. The Scatter plot showed a correlation of 
(R=95.65%, p-value<0.001) while the Bland-Altman plot pre-
sented a bias of 0.01 cm3 with range [-1.08, 1.1] cm3.  Both 
scatter and Bland-Altman results affirmed the superiority of 
our method in slice-grouped-wise. Moreover, the subdividing 
idea emphasized the fact that the top 25% and bottom 25% re-
gional groups have the most deviations among all four regions 
in the traditional method, while middle regions (25%-75%) 
show fewer differences. In a region-based Dice score, the re-
sults were improved, from (82.27%±5.32, 86.79%±4.34, 
88.21%±3.25, and 85.87%±4.7) for without using blur nor 
window-level to (85.82%±4.65, 88.64%±2.04, 91.87%±2.03, 
and 91.87%±2.8) using both blur and window-level, for slice 
regions of (bottom 25%, 25%-50%, 50%-75%, and top 25%), 
respectively.  

We further investigated the use of different deep learning 
techniques with both with and without window leveling input 
arrangement, as shown in Table I. The study includes the train-
ing/validating on the same 50 CT scans and testing on the same 
20 CT scans using U-Net [9](with CNN as internal blocks), 

 
Fig. 4. Segmentation examples of three individuals, images show the axial non-contrast 

CT view of heart regions, as shown in A, E, and I. The manual EAT segmentations of 

those individuals are illustrated in blue labelling as in B, F, and I, respectively. The 

proposed automatic deep learning segmentation results are illustrated denoted with 

blue in C, G, and K, respectively. Finally, combined regions of manual and automatic 

labelling are shown in D, H and L, respectively, where red represents manual area, blue 

represents automatic, and white is the overlapped area.  
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Fig. 5. Experiments plots of EAT volumetric evaluation for the testing subjects between 

manual and automatic methods per patient. The scatter plot of manual vs. automated 

method is shown in (A) while the Bland-Altman plot is shown in (B). The one outlier 

in (B) had an unusual automatic segmentation which could be easily identified and 

corrected. These differences are due to the large EAT volume, the noise, and the un-

clear sac tissues in some slices. And they can be improved with more training subjects. 

A B
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SegNet [10] (with VggNet-16 internal blocks), SegNet (with 
VggNet-19 internal blocks), and our proposed method, the 
DeepLab-v3 plus (using ResNet-18). We used the same three 
consecutive concatenations for all experiments. Our proposed 
method provides the highest average Dice score of (89.31%± 
1.95), and the highest average IOU score of (80.74%±3.16), 
with the second least average, EAT volume error of 
(0.79%±9.21). In a general overview, one can also notice that 
all the window leveling-based deep network results are better 
than without window leveling-based results. This emphasized 
the upper hand of the proposed method associated with the 
suggested DeepLab-v3 plus deep network. 

A comprehensive comparison with the recently reported 
results from different algorithms, cohorts, and imaging modal-
ities is shown in Table II. Our proposed reverse model showed 
the best Dice score among comparable non-contrast CT mo-
dalities and the best correlation coefficient of (R=98.52%) 
among all methods. The only method that showed closer per-
formance was presented by He et. al [7], which had 200 sub-
jects with CTA modality. CTA has a thinner slice thickness, 
hence 5-times the total number of slices than CT, while CTA 
has a contrast agent that improves the detection of blood ves-
sels. With a slice thickness of 2.5 mm, the inter-slice textural 
details are missing, while no-contrast CT makes it more diffi-
cult to segment the pericardium, however, our method per-
formed as well as a CTA study. The correlation coefficient can 
be improved with larger cohorts, where R is less sensitive to 
individual errors. 

IV. CONCLUSION 

We conclude in this study that our window leveling 3-con-

secutive-slice-based method detects the sagittal curvature of 

the sac of the heart to support the axial slices, hence improv-

ing the deep learning in all presented deep network architec-

tures. The use of window leveling in our method outperforms 

the traditional (without WL) method in (90%) of the testing 

set. Compared to alternative deep methods, the proposed 

method shows dice score improvement with averages of 

22.19%, 1.13%, and 0.35% over U-net, SegNet(Vgg-16), and 

SegNet (Vgg-19), respectively. The scatter and Bland-Altman 

plots prove that the proposed method is highly correlated com-

pared to manual segmentation with less bias and fewer outli-

ers. In this work, even with relatively small sample size, our 

method outperformed other approaches. Indeed, our results 

were comparable to studies in larger cohorts and favorably 

compared with other studies using CT contrast and higher res-

olution.  
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TABLE I 
RESULTS OF DIFFERENT DEEP SEGMENTATION TECHNIQUES USING THE 

SAME TRAINING/TESTING COHORT. 

Deep Segmenta-

tion (Deep net-

work)  

Window 

leveling 

Average Dice 

Score(%) 

Average 

IOU Score 

(%) 

Average EAT 

volume error 

(%) 

U-Net (CNN) Without 34.31±10.92 21.26±8.75 -53.52±12.28 

U-Net (CNN) With 67.12±5.58 50.76±6.22 -46.64±7.01 

SegNet(VGG-16) Without 86.16±2.66 75.78±4.07 2.03±11.56 

SegNet(VGG-16) With 88.18±2.20 78.93±3.58 9.18±9.45 

SegNet(VGG-19) Without 86.78±3.19 76.77±4.95 -0.46±9.79 

SegNet(VGG-19) With 88.96±2.04 80.17±3.24 1.92±7.20 

DeepLab-v3 Plus 

(ResNet-18) 

Without 85.17±3.20 74.30±4.88 13.94±10.05 

DeepLab-v3 Plus 

(ResNet-18) 

With 89.31±1.96 80.74±3.16 0.79±9.21 

 

TABLE II 

RESULTS OF DIFFERENT SEGMENTATION STUDIES USING DIFFERENT 

COHORTS WITH DIFFERENT MODALITIES. 

Study  

Cohort popu-

lation/ mo-

dality  

Average 

Dice 

Score(%) 

Correlation Co-

efficient R (%) 

Commanduer [4] 250/ CT* 82.3 92.4 

Commanduer [5] 614/ CT 87.3 97.4 

He [6] 40 /CTA 85 - 

He [7] 200/ CTA 88.7 94.9 

Ours (with WL) 70/ CT 89.31±1.96 97.2 

       * All CT modalities in this table are thick slice non-contrast CT scans, while 

the CTA scans are thin slice with contrast agent for easy vessel detection and clini-

cal functionality evaluation. 

 
Fig. 6. Experiments scatter (A) and Bland-Altman (B) plots of EAT volumetric evalua-

tion for the testing subjects between manual and automatic methods per slice. Slices are 

categorized into quartile groups based on their location in total heart slices and identified 

in colors as: blue for slices in the bottom 25%, red for the slices between 25%-50%, 

yellow for the slices between 50%-75%, and blue for slices in the top 25%. From plots 

the most deviations are in the top and bottom 25% slices while the middle 50% slices 

are more accurately segmented. 
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