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Abstract— Ultrasound imaging is commonly used for diag-
nosing breast cancers since it is non-invasive and inexpensive.
Breast ultrasound (BUS) image classification is still a challeng-
ing task due to the poor image quality and lack of public
datasets. In this paper, we propose novel Neutrosophic Gaussian
Mixture Models (NGMMs) to more accurately classify BUS
images. Specifically, we first employ a Deep Neural Network
(DNN) to extract features from BUS images and apply principal
component analysis to condense extracted features. We then
adopt neutrosophic logic to compute three probability functions
to estimate the truth, indeterminacy, and falsity of an image
and design a new likelihood function by using the neutrosophic
logic components. Finally, we propose an improved Expectation
Maximization (EM) algorithm to incorporate neutrosophic logic
to reduce the weights of images with high indeterminacy and
falsity when estimating parameters of each NGMM to better
fit these images to Gaussian distributions. We compare the
performance of the proposed NGMMs, its two peer GMMs,
and three DNN-based methods in terms of six metrics on a new
dataset combining two public datasets. Our experimental results
show that NGMMs achieve the highest classification results for
all metrics.

I. INTRODUCTION

Breast cancer is one of the most common cancers among
U.S. women. It alone accounts for 30% of female cancers
[1]. About 13% of U.S. women develop breast cancer in
their lifetime. Estimated 330,840 new women cases and
43,600 women death cases are reported in U.S. in 2020
[2]. Breast cancer can be classified into two classes: benign
and malignant. In general, benign tumors have smooth shape
while malignant tumors tend to have irregular border [3].

Early diagnosis and treatment of breast cancer are essential
to reduce mortality [4]. Ultrasound imaging is a non-invasive,
inexpensive, and effective diagnostic tool that has been
commonly used to detect women breast cancers at early
stages. The Breast Ultrasound (BUS) image classification
is an effective tool to assist radiologists to make correct
decisions [5]. It has been extensively studied for many years.
However, it is still a challenging task due to the poor quality
of BUS images and lack of public datasets.

Over recent decades, many methods have been pro-
posed for breast cancer classification. Support Vector Ma-
chine (SVM), K-Nearest Neighbors (KNN), random for-
est, Multiple-Instance Learning (MIL), and Deep Neural
Network (DNN) based methods have been well studied.
Wang et al. [6] propose to extract a local descriptor named
Phased Congruency-based Binary Pattern (PCBP) and feed
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it to the SVM for breast cancer classification. Liu et al.
[7] employ the SVM on three edge-based features (e.g.,
sum of maximum curvature, sum of maximum curvature
and peak, and sum of maximum curvature and standard
deviation) extracted from BUS images for breast cancer
classification. Cong et al. [8] propose to capture texture
features in the Gray-Level Co-occurrence Matrix (GLCM)
and apply a selective ensemble method that incorporates
KNN, SVM, and Naive Bayes for classification. Ding et al.
[9] propose a MIL algorithm to combine local distance and
sparseness features and use KNN for classification. Bing et
al. [10] propose a sparse representation based-MIL method
that uses concentric circle to extract global and local features
and employ a Relevance Vector Machine (RVM) for classi-
fication. To address speckle noise and low contrast issues,
Abdel-Nasser et al. [11] propose to use a super-resolution
computation method to reconstruct a high-resolution image
from a set of input BUS images and then compute regions of
interest and texture features to better represent a BUS image.
Random forests are finally deployed on these features for
breast cancer classification. Shi et al. [12] propose a stacked
deep polynomial network that generates high-level texture
features and achieves good classification accuracy on small
ultrasound datasets. Virmani et al. [13] show that features
extracted by DNNs (e.g., VGG [14] and ResNet [15]) are
efficient for BUS image classification.

Gaussian Mixture Models (GMMs) are commonly used
in BUS image segmentation to smooth images and remove
noise [16]. However, they have not been widely used for
BUS image classification. In this paper, we propose novel
Neutrosophic Gaussian Mixture Models (NGMMs) to more
accurately classify BUS images with tumors. Specifically, we
train one NGMM with five Gaussian distributions for benign
tumors and one NGMM with four Gaussian distributions for
malignant tumors. Each NGMM uses probability functions
to estimate three neutrosophic logic components (i.e., the
truth, indeterminacy, and falsity) of an image. These com-
ponents are then incorporated into an improved Expectation-
Maximization (EM) algorithm to train the two NGMMs to
represent benign and malignant tumors for more accurate
tumor classification.

Our major contributions are: (1) Incorporating neutro-
sophic logic into GMMs to build NGMMs for BUS image
classification; (2) Employing a DNN to extract features,
which are further processed by Principal Component Analy-
sis (PCA) to obtain condensed features; (3) Adopting neutro-
sophic logic to compute three probability functions to esti-
mate the truth, indeterminacy, and falsity of an image to be-
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(a)

(b)

Fig. 1: Overview of NGMMs in (a) Training; (b) Testing.

long to an NGMM; (4) Designing a new likelihood function
using the neutrosophic logic components; (5) Proposing an
improved EM algorithm to employ neutrosophic logic-based
probability functions to reduce weights of images with high
indeterminacy and falsity when estimating parameters of an
NGMM, which leads to better fit these images to Gaussian
distributions in their respective NGMM; (6) Comparing the
proposed NGMMs with its two peers, namely, conventional
GMMs and Type-2 Fuzzy GMMs (T2FGMMs) [17], and
three DNN-based methods on a new dataset to demonstrate
its superior performance in tumor classification.

II. THE PROPOSED METHOD

The proposed NGMMs has three stages: (1) feature extrac-
tion, (2) NGMMs construction, and (3) NGMMs classifica-
tion. The first stage uses a DNN to extract features from input
BUS images and then applies PCA to reduce dimensions.
The second stage accomplishes three tasks: (1) designing
three neutrosophic logic-based probability functions to es-
timate the truth, indeterminacy, and falsity of an image;
(2) proposing a new likelihood function by incorporating
neutrosophic logic components; (3) employing an improved
EM algorithm to reduce the weights of images with high
indeterminacy and falsity to better fit them to Gaussian
distributions in their respective NGMM. The third stage uses
two trained NGMMs to classify breast tumors.

In this section, we first introduce the overview of proposed
NGMMs from both training and testing perspectives. We
then present three neutrosophic logic components of NG-
MMs and how to use them to estimate appropriate weights
of training images with different characteristics. Finally, we
describe the training algorithm (e.g., improved EM) in detail.

A. Overview

Fig. 1 presents the block diagram of proposed NGMMs,
where Fig. 1(a) and 1(b) show overview from training and
testing perspectives, respectively.

As illustrated in Fig. 1(a), BUS images of arbitrary sizes
are resized to 224 × 224 and then fed into a DNN for
feature extraction. PCA is then employed on the reshaped
feature map in the form of a vector to reduce its high
dimension to 1×25 to keep important principal components
that could lead to convergence of NGMMs. An improved EM
algorithm, which incorporates the weights computed from
neutrosophic logic for each training image, is applied on

these preprocessed features to train two NGMMs to bet-
ter capture characteristics of benign and malignant tumors.
Specifically, the NGMM representing benign tumors consists
of five Gaussian distributions and the NGMM representing
malignant tumors consists of four Gaussian distributions.
During the training procedure, three neutrosophic logic com-
ponents, T , I and F , are calculated for each input image
based on all Gaussian distributions in both NGMMs. These
neutrosophic components are used in the improved EM
algorithm to estimate the weights of each input image to
more accurately train two NGMMs.

As illustrated in Fig. 1(b), the testing procedure follows
the same flow. Each testing image goes through feature
extraction and PAC process to obtain a preprocessed feature
vector. This vector is then fed into two trained NGMMs
to calculate its probability in each NGMM. It is finally
classified to the category with the highest probability.

B. Neutrosophic Logic Components of NGMMs
We propose to incorporate neutrosophic logic into GMMs

to build NGMMs to improve their classification power.
Specifically, we use five Gaussian distributions to construct
an NGMM to classify benign tumors and four Gaussian
distributions to construct an NGMM to classify malignant
tumors. In this subsection, we discuss three probability func-
tions in each NGMM to compute neutrosophic components
for estimating the weights of images with high indeterminacy
and falsity. These weights facilitate each Gaussian distribu-
tion to pay less attention to images with high indeterminacy
and falsity and therefore lead to better NGMM models to
represent all training images.

For each training BUS image, we use T , I , and F to
represent its truth, indeterminacy, and falsity membership in
a Gaussian distribution, respectively. In the following, we
explain the formulas of computing these three neutrosophic
logic components.

Let C denote the number of categories (e.g., C = 2 for
breast tumor classification), X denote the set of all training
images containing either benign or malignant tumors, Xc

denote the set of all training images in category c, and Nc

denote the number of training images in category c. For an
NGMM corresponding to category c, where c = 1 represents
the benign category and c = 2 represents the malignant
category, there are Kc Gaussian distributions. The probability
of a BUS image xi belonging to the kthc Gaussian distribution
in category c is calculated by:

pkc
(xi) = ωkc

N (xi|µkc
,Σkc

) (1)

where kc is the index of Gaussian distributions in the NGMM
corresponding to category c (kc ranges from 1 to 5 when
c = 1 and kc ranges from 1 to 4 when c = 2), and ωkc

,
µkc

, and Σkc
are the weights, mean vector, and co-variance

matrix of the kthc Gaussian distribution, respectively. We then
define Tkc

(xi), the truth membership for xi to be in the kthc
Gaussian distribution, as follows:

Tkc
(xi) =

pkc
(xi)∑Kc

j=1 pj(xi)
(2)
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where Tkc
(xi) is the normalization of pkc

(xi) and
∑
Tkc

=
1. Kc is the number of Gaussian distributions in the NGMM
corresponding to category c, where Kc = 5 when c = 1
and Kc = 4 when c = 2. The smaller the value of Tkc

(xi),
the lower probability of xi belonging to the kthc Gaussian
distribution. An image xi has the highest probability to
belong to a Gaussian distribution in category c when its
Tkc(xi) corresponding to that Gaussian distribution is the
highest. We then define T c(xi), the truth membership for xi
to be in the cth category, as follows:

T c(xi) = max
kc=1,2,...,Kc

Tkc
(xi) (3)

If the value of Tkc
(xi) is small for all kc’s, it indicates that

the probability of xi belonging to category c is small. In other
words, the falsity membership for xi to belong to category
c is high. To this end, we define the falsity membership for
xi to be in the cth category as follows:

F c(xi) = 1− T c(xi) (4)

where T c(xi) measures the highest probability for xi to
belong to category c. The smaller the T c(xi) value, the
higher the F c(xi) value. The high F c(xi) value indicates
the high probability for xi to falsely belong to category c.

We adopt the concept of entropy [18] to define the
indeterminacy for an image xi to belong to the cth category
as follows:

Ic(xi) = − 1

logKc
×

Kc∑
kc=1

Tkc(xi) log Tkc(xi) (5)

when Tkc(xi) = 1
Kc

for kc = 1, 2, ...,Kc (i.e., the probability
of xi belongs to each Gaussian distribution in category c is
the same), the degree of indeterminacy Ic(xi) achieves the
highest value of 1. This indicates xi is at the most chaotic
(i.e., indeterminacy) status.

By incorporating both indeterminacy and falsity, we define
the likelihood of all images xi ∈ Xc to belong to the cth

category as follows:

Lc(Xc) =

Nc∏
i=1

(
Kc∑

kc=1

pkc(xi)

)Gc(xi)

(6)

where Gc(xi) = (1−Ic(xi))(1−F c(xi)). Ic(xi) and F c(xi)
measure the indeterminacy and falsity memberships for xi
in category c, respectively. This likelihood function utilizes
neutrosophic logic to estimate the contributions of each
training image in all Gaussian distributions of its associated
GMM and adjust its likelihood based on its contributions.

C. Improved EM Algorithm

We propose an improved EM algorithm to train two
NGMMs to represent two categories using benign and ma-
lignant training images. Specifically, we incorporate three
neutrosophic logic components, namely, T , I , and F , into the
conventional EM algorithm to assign weights to images with
different characteristics when computing the log-likelihood
of each training image in the cth category. The log-likelihood

instead of likelihood is employed in the EM algorithm to
make it easier to compute the partial derivatives with regard
to the weights, mean vector, and co-variance matrix of
each Gaussian distribution. By employing the logarithmic
operation on Eq. (6), we convert the likelihood to its log-
likelihood by:

`c(Xc) =

Nc∑
i=1

Gc(xi) log(

Kc∑
kc=1

pkc(xi)) (7)

This conversion makes Gc(xi) become a positive scalar
of the conventional log-likelihood employed in the EM
algorithm. Gc(xi) takes into account of both Ic(xi) and
F c(xi) of an image xi in category c and assigns a weight in
the range of (0, 1) based on the contribution of xi in category
c. Using the log-likelihood expression, the values of µkc ,
Σkc , and ωkc are respectively updated by taking a partial
derivative with regard to µkc

, Σkc
, and ωkc

, as follows:

µkc =

∑Nc
i=1G

c(xi) · Tkc(xi) · xi∑Nc
i=1G

c(xi) · Tkc(xi)

Σkc =

∑Nc
i=1G

c(xi) · Tkc(xi) · (xi − µkc)(xi − µkc)T∑Nc
i=1G

c(xi) · Tkc(xi)

ωkc =

∑Nc
i=1G

c(xi) · Tkc(xi)∑Nc
i=1G

c(xi)

(8)

The improved EM algorithm is summarized in Algorithm
1. It should be noted that the improved EM algorithm is
individually employed on BUS benign training images and
BUS malignant training images to train their corresponding
NGMMs. For each category, we calculate a set of T , I and
F values for each training image and incorporate them into
the likelihood function to consider the contribution of each
training image to all Gaussian distributions.

Algorithm 1 Improved EM Algorithm

Input: Xc containing a set of benign BUS images or
malignant BUS images

Output: The parameters µkc , Σkc and ωkc for the cth

category’s NGMMs
Initialization: Initialize the parameters µkc

, Σkc
and ωkc

by
k-means clustering where k = Kc.

1: while not converged do
2: E-Step for each xi ∈ Xc do
3: Calculate pkc(xi) using Eq. (1) for all kc’s.
4: Calculate Tkc

(xi) using Eq. (2) for all kc’s.
5: Calculate F c(xi) using Eq. (4).
6: Calculate Ic(xi) using Eq. (5).
7: end E-Step for each xi ∈ Xc

8: M-Step do
9: Re-estimate µkc , Σkc and ωkc using Eq. (8).

10: end M-Step
11: Evaluate log-likelihood using Eq. (7)
12: end while

When using the improved EM algorithm to train the
NGMM for each category, Gc(xi) reduces the weights of
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TABLE I: Summary of Classification Results (± Standard Deviation)

Methods TPR FPR ACC PRE F1-score
LeNet 0.9270 ± 0.0608 0.3962 ± 0.0572 0.8217 ± 0.0409 0.8289 ± 0.0223 0.8743 ± 0.0330
VGG16 0.9417 ± 0.0517 0.4510 ± 0.3764 0.8137 ± 0.0964 0.8339 ± 0.1147 0.8769 ± 0.0516
ResNet-101 0.9450 ± 0.0431 0.1618 ± 0.0664 0.9101 ± 0.0277 0.9248 ± 0.0282 0.9338 ± 0.0215
VGG16 + GMMs 0.9531 ± 0.0331 0.4167 ± 0.2150 0.8329 ± 0.0712 0.8321 ± 0.0764 0.8866 ± 0.0447
VGG16 + T2FGMMs 0.9267 ± 0.0580 0.2536 ± 0.1787 0.8679 ± 0.0461 0.8906 ± 0.0711 0.9049 ± 0.0317
VGG16 + NGMMs 0.9219 ± 0.0700 0.1628 ± 0.1038 0.8943 ± 0.0583 0.9229 ± 0.0446 0.9209 ± 0.0454
ResNet-101 + GMMs 0.9457 ± 0.0343 0.3121 ± 0.1517 0.8617 ± 0.0565 0.8653 ± 0.0561 0.9028 ± 0.0375
ResNet-101 + T2FGMMs 0.9287 ± 0.0592 0.1700 ± 0.1477 0.8965 ± 0.0706 0.9213 ± 0.0633 0.9239 ± 0.0521
ResNet-101 + NGMMs 0.9587 ± 0.0370 0.1249 ± 0.1085 0.9315 ± 0.0472 0.9424 ± 0.0458 0.9499 ± 0.0341

images with either high indeterminacy or high falsity or both.
For example, for an image with either high Ic(xi) or F c(xi)
value, the value of Gc(xi) is small and leads to a small value
of Gc(xi) · Tkc(xi) for three learnable parameters µkc, Σkc

and ωkc. In other words, the small value of Gc(xi) reduces
the influence of image xi when estimating the value of µkc,
Σkc, and ωkc. As a result, our improved EM algorithm is able
to guide NGMMs to pay less attention to images with either
high indeterminacy or falsity or both during the training
procedure. It can better train the NGMM to represent all
training images by considering their contributions in each
Gaussian distribution.

III. EXPERIMENTS

In this section, we describe the BUS datasets, explain the
evaluation metrics, and present the experimental results of
three DNN-based methods, the proposed NGMMs, and its
two peer methods (conventional GMMs and T2GMMs).

Datasets. There are two publicly available BUS datasets:
one is Data B [19] and the other is Data BUSI [20]. Data B
contains 110 images with benign tumors and 53 images with
malignant tumors (163 images in total) with an average size
of 760 × 570 pixels. Data BUSI contains 487 images with
benign tumors, 210 images with malignant tumors, and 133
images without tumors (830 images in total) with an average
size of 500× 500 pixels. Ethical approval is not required as
confirmed by the license attached with the open access data.

Evaluation Metrics. We combine the images with benign
and malignant tumors in both Data B and Data BUSI datasets
(860 images in total) to get a new dataset. We perform 10-
fold cross-validation to evaluate the performance of each
compared classification method on the new dataset in terms
of six evaluation metrics. These metrics are True Positive
Ratio (TPR), False Positive Ratio (FPR), Classification Ac-
curacy (ACC), Precision (PRE), F1-score, and Receiver Op-
erating Characteristic (ROC) curve. All classification results
are presented by their mean values achieved over 10 runs ±
their Standard Deviation (SD).

Experimental Results. Since we use the DNN to extract
features to build the NGMMs, we compare the classification
results of three common DNN-based methods (e.g., LeNet
[21], VGG16 [14], and ResNet-101 [15]) on our new dataset.
Their classification results in terms of five evaluation metrics
are listed in the first three rows of Table I. It clearly shows
all DNN-based methods achieve good BUS classification
results, which are consistent with the findings in [13] that

features extracted by DNNs are efficient for BUS image
classification. ResNet-101 outperforms both VGG16 and
LeNet and achieves the best classification result in terms
of all metrics.

We then implement the proposed NGMMs using the best
DNN for the BUS classification task (i.e., ResNet-101)
to extract features and implement its peers (GMMs and
T2FGMMs [17]) using ResNet-101 to extract features. We
also implement their counterparts using VGG16 to extract
features due to its simple network architecture. The classifi-
cation results for these six methods are listed in the last six
rows of Table I. Based on the features extracted by ResNet-
101, NGMMs achieve the best classification results in terms
of all five metrics and T2FGMMs outperform GMMs in
terms of four metrics: FPR, ACC, PRE and F1-score. Based
on the features extracted by VGG16, it also shows that
NGMMs achieve the best classification results in terms of all
five metrics except for TPR. T2FGMMs achieve the second
best classification results in terms of four metrics: FPR,
ACC, PRE and F1-score and GMMs have the highest TPR.
Among all methods shown in Table I, the proposed ResNet-
101+NGMMs achieve the highest TPR value of 0.9587,
the lowest FPR value of 0.1249, the highest ACC value of
0.9315, the highest PRE value of 0.9424, and the highest
F1-score of 0.9499.

Fig. 2 shows ROC curves with values of Area Under the
ROC Curve (AUC) for each method listed in table I. Among
three DNNs, ResNet-101 yields the highest AUC value of
0.9618; VGG16 and LeNet yield significantly smaller AUC
values of 0.8582 and 0.8456, respectively. Using the features
extracted by VGG16, NGMM achieves the highest AUC
value of 0.9212, which is marginally larger than the AUC
value of 0.9150 obtained by T2FGMMs and significantly
larger than the AUC value of 0.8792 obtained by GMMs. Us-
ing the features extracted by ResNet-101, NGMMs achieve
the highest AUC value of 0.9631, T2FGMMs achieve the
second highest AUC value of 0.9447, and GMMs achieve the
smallest AUC value of 0.9080. Overall, the proposed ResNet-
101+NGMMs achieve the best classification accuracy with
the highest AUC of 0.9631.

Both Table I and Fig. 2 show the similar classification
trends. The proposed NGMMs perform the best classification
results using features extracted from the DNN when com-
paring with their peers (GMMs and T2FGMMs) in terms of
all six evaluation metrics. In addition, it has the smallest SD
values, which indicates that its classification results are stable
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Fig. 2: ROC curves of nine compared classification methods.

across multiple runs. The proposed NGMMs also signifi-
cantly improve their corresponding DNN-based classification
methods (i.e., without using GMMs). Specifically, ResNet-
101+NGMMs improves the ResNet-101 by 1.45% in TPR,
22.81% in FPR, 2.35% in ACC, 1.90% in PRE, and 1.72% in
F1-score, respectively. The VGG16+NGMMs improves the
VGG16 by 63.90% in FPR, 9.91% in ACC, 10.67% in PRE,
and 5.02% in F1-score, respectively.

Implementation Details. All experiments are conducted
on Ubuntu 18.04 system, Intel(R) Xeon(R) CPU E5-2620
2.00 GHz, and two NVIDIA GeForce 1080Ti graphics cards.
For the training of convolutional neural networks, Adam
optimizer is used with a learning rate of 0.0001, momentum
parameters β1 of 0.9, β2 of 0.99, a weight decay of 0.0005,
a batch size of 20, and the number of training epochs of
80. Cross-entropy is employed in the loss function. The
feature map from the VGG16 network is extracted by its fifth
convolutional block followed by a global average pooling,
which is 1×512. The same operation is conducted to extract
the feature map from the ResNet-101, which is 1 × 2048.
Both reshaped features can be processed by PCA to reduce
its dimension to 1 × 25. Features after PCA are utilized in
the EM algorithm to train GMMs to represent benign and
malignant tumors in two categories. The number of PCA
components is 25. The number of Gaussian distributions in
the NGMM for benign and malignant classes are empirically
set to be 5 and 4, respectively.

IV. CONCLUSIONS

We propose novel NGMMs for BUS image classifica-
tion. It employs a DNN for feature extraction to train
two NGMMs to represent benign and malignant tumors in
two categories. We first utilize the neutrosophic logic-based
probability functions to estimate the truth, indeterminacy,
and falsity membership of an image. We then incorporate
these neutrosophic components to not only design a novel
likelihood function but also reduce the weights of images
with high indeterminacy and falsity when estimating the

parameters of an NGMM in an improved EM algorithm.
Overall, the proposed NGMMs outperform three state-of-the-
art DNN-based methods and its two peer GMMs in terms of
six metrics on the new dataset.
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